TY - JOUR T1 - EVALUATION OF REINFORCING BARS RATIO EFFECTS ON SCC BEAM-COLUMN JOINT PERFORMANCE TT - Kendiliğinden Yerleşen Betonla Yapılan Kolon-Kiriş Birleşimlerinde Donatı Oranı Etkisinin Değerlendirilmesi AU - Farrokh Ghatte, Hamid PY - 2019 DA - December Y2 - 2019 DO - 10.17482/uumfd.587505 JF - Uludağ Üniversitesi Mühendislik Fakültesi Dergisi JO - UUJFE PB - Bursa Uludağ Üniversitesi WT - DergiPark SN - 2148-4155 SP - 141 EP - 152 VL - 24 IS - 3 LA - en AB - Beam-column joints require a high ductility during the unexpected loadings that necessitate theneed for ductile concrete in such unprotected locations. Alternatively, self-compacting concrete (SCC) isa sort of concrete which has generated tremendous interest throughout the last decades in order to reach aductile structural elements during the seismic actions. Specific properties of this type of concrete includehigh performance, high resistance against segregation and needless to internal or external vibration inorder to compact. In the seismic regions, ductility is one of the most important factors in the design ofreinforced concrete (RC) members, especially structural joints flexural performance; it is due to theenhance in the capability of plastic deformability. This paper describes load-displacement behavior ofexperimental and theoretical analysis of four SCC beam-column joints with different percentage of theratio of the reinforcing bars (ρ). In the theoretical phase of this investigation three-dimensional nonlinearfinite element method (FEM) model i.e., Seismostruct was used and the load-deflection diagrams wereplotted to compare the test results with the numerical output. The experimental results and nonlinear FEMmodeling indicate that using SCC as a workable concrete in beam-column joints of reinforced concretestructures has satisfactory performance in terms of ductility and energy dissipations. KW - Beam-column joint KW - Ductility KW - FEM KW - Load-deflection KW - Self-compacting concrete N2 - Yüksek süneklik gerektiren kolon-kiriş düğüm noktaları gibi korunmasız bölgelerde, beklenmedikyüklemeler altında, sünek betona ihtiyaç duyulmaktadır. Alternatif olarak, kendiliğinden yerleşen beton(KYB), deprem etkisi altinda elemanların daha sünek davranış gösteren bir yapıya ulaşmak için sonyıllarda büyük ilgi yaratan bir beton türüdür. Bu tipteki betonların belirgin özellikleri yüksek performans,segregasyona karşı yüksek direnç ve yerleşme için iç veya dış vibrasyona ihtiyaç duyulmamasıdır.Deprem bölgelerinde, süneklik, özellikle eğilmeye maruz kalan yapısal bağlantı noktalarınınperformansında önemli bir faktördür ve bu davranış plastik yerdeğiştirme kapasitesindeki artıştankaynaklanmaktadır. Bu makalede, KYB kullanılan ve farklı donatı oranlarındaki dört adet kolon-kirişdüğüm noktasının yük-yerdeğiştirme davranışının deneysel ve teorik analizleri açıklanmaktadır. Buaraştırmanın teorik aşamasında, üç boyutlu sonlu elemanlar metodu (SEM), Seismostruct doğrusalolmayan yazılımı kullanılarak, deneysel-nümerik sonuçlar karşılaştırılmış ve yük-yerdeğiştirmediyagramları çizdirilmiştir. Deneysel sonuçlar ve doğrusal olmayan SEM modeli, kolon-kiriş düğümnoktalarında işlenebilir beton olarak KYB’un kullanımının, betonarme yapılarda süneklik ve enerji yutmakapasitesi bakımından tatmin edici bir performansa sahip olduğunu göstermiştir. CR - Ashtiani, M. S., Dhakal, R. P., & Scott, A. N. (2013). Post-yield bond behaviour of deformed bars in high-strength self-compacting concrete. Construction and Building Materials, 44, 236-248. doi: 10.1016/j.conbuildmat.2013.02.072 CR - Ashtiani, M. S., Dhakal, R. P., & Scott, A. N. (2014). Seismic performance of high-strength self-compacting concrete in reinforced concrete beam-column joints. Journal of Structural Engineering, 140(5), 04014002. doi: 10.1061/(asce)st.1943-541x.0000973 CR - Bedirhanoglu, I., Ilki, A., Pujol, S., & Kumbasar, N. (2010). Seismic behavior of joints built with plain bars and low-strength concrete. ACI Struct. J, 107(3), 300-310. doi: 10.1061/(asce)cc.1943-5614.0000156 CR - Dashti, F., Dhakal, R. P., & Pampanin, S. (2017). Numerical modeling of rectangular reinforced concrete structural walls. Journal of Structural Engineering, 143(6), 04017031. doi: 10.1061/(ASCE)ST.1943-541X.0001729 CR - De Almeida Filho, F. M., Mounir, K., & El Debs, A. L. H. (2008). Bond-slip behavior of self-compacting concrete and vibrated concrete using pull-out and beam tests. Materials and Structures, 41(6), 1073-1089. doi: 10.1617/s11527-007-9307-0 CR - Desnerck, P., De Schutter, G., & Taerwe, L. (2010). Bond behaviour of reinforcing bars in self-compacting concrete: experimental determination by using beam tests. Materials and Structures, 43(1), 53-62. doi: 10.1617/s11527-010-9596-6 CR - Dhakal, R., & Scott, A. C. N. (2018). Cyclic response analysis of high-strength selfcompacting concrete beam-column joints: Numerical modeling and experimental validation. Bulletin of the New Zealand Society for Earthquake Engineering volume 51 issue 1 on pages 23 to 33. doi: 10.5459/bnzsee.51.1.23-33 CR - Ghatte, H.F, Comert, M., Demir, C., Akbaba, M., & Ilki, A. (2018). Seismic Retrofit of Full-Scale Substandard Extended Rectangular RC Columns through CFRP Jacketing: Test Results and Design Recommendations. Journal of Composites for Construction, 23(1), 04018071. doi: 10.1061/(ASCE)CC.1943-5614.0000907 CR - Hassan, A. A. A., Hossain, K. M. A., & Lachemi, M. (2008). Behavior of full-scale selfconsolidating concrete beams in shear. Cement and Concrete Composites, 30(7), 588-596. doi: 10.1016/j.cemconcomp.2008.03.005 CR - Kim, Y. H., Hueste, M. B. D., Trejo, D., & Cline, D. B. (2010). Shear characteristics and design for high-strength self-consolidating concrete. Journal of structural engineering, 136(8), 989-1000. doi: 10.1061/(ASCE)ST.1943-541X.0000194 CR - Lachemi, M., Hossain, K. M., & Lambros, V. (2005). Shear resistance of self-consolidating concrete beams experimental investigations. Canadian journal of civil engineering, 32(6), 1103-1113. doi: 10.1139/l05-066 CR - Li B, Tran CTN and Pan TC (2009). Experimental and numerical investigations on the seismic behavior of lightly reinforced concrete beam-column joints. ASCE Journal of Structural Engineering, 135(9): 1007-1018. doi: 10.1061/(ASCE)ST.1943-541X.0000040 CR - Mander, J. B., Priestley, M. J., & Park, R. (1988). Theoretical stress-strain model for confined concrete. Journal of structural engineering, 114(8), 1804-1826. doi: 10.1061/(ASCE)0733-9445(1988)114:8(1804) CR - Menegotto, M., & Pinto, P. (1973). Method of Analysis for Cyclically Loaded Reinforced Concrete Plane Frames Including Changes in Geometry and Non-elastic Behavior of Elements under Combined Normal Force and Bending. Proceedings. IABSE Symposium on Resistance and Ultimate Deformability of Structures Acted on by Well-Defined Repeated Loads, International Association of Bridge and Structural Engineering, 13, pp. 15-22. Lisbon, Portugal. CR - Persson, B. (2001). A comparison between mechanical properties of self-compacting concrete and the corresponding properties of normal concrete. Cement and concrete Research, 31(2), 193-198. doi: 10.1016/S0008-8846(00)00497-X CR - SeismoStruct v6.5. (2013). A computer program for static and dynamic nonlinear analyses of framed structures. Available from http://www.seismosoft.com CR - Sonebi, M., Tamimi, A. K., & Bartos, P. J. (2003). Performance and cracking behavior of reinforced beams cast with self-consolidating concrete. Materials Journal, 100(6), 492-500. doi: 10.14359/12956 CR - Tsonos, A. G., Tegos, I. A., & Penelis, G. G. (1993). Seismic resistance of type 2 exterior beam-column joints reinforced with inclined bars. Structural Journal, 89(1), 3-12. doi: 10.14359/1278 CR - Valcuende, M., & Parra, C. (2009). Bond behaviour of reinforcement in self-compacting concretes. Construction and Building Materials, 23(1), 162-170. doi: 10.1016/j.conbuildmat.2008.01.007 UR - https://doi.org/10.17482/uumfd.587505 L1 - http://dergipark.org.tr/tr/download/article-file/901131 ER -