TY - JOUR T1 - HAVAN MÜHİMMATI TAPALARINDA EMNİYET MEKANİZMALARININ İNCELENMESİ TT - INVESTIGATION OF SAFETY MECHANISMS IN THE MORTAR FUZES AU - Yıldız, Serhad AU - Pehlivanlı, Zühtü Onur PY - 2019 DA - December JF - Bartın University International Journal of Natural and Applied Sciences JO - JONAS PB - Bartın Üniversitesi WT - DergiPark SN - 2667-5048 SP - 120 EP - 128 VL - 2 IS - 2 LA - tr AB - Büyükve orta kalibreli mühimmatlarda kullanılan ve mühimmatın ilk ateşleme sistemiolarak adlandırılan tapaların alt sistemleri ele alınarak; emniyet vefonksiyonellik arasındaki kritik dengeyi sağlayan tapaların içmekanizmalarındaki dinamik hareketler incelenmiştir. Bu dinamik hareketlermühimmatın atış anında oluşan atalet kuvvetleri ve namlunun yiv setlerininmühimmata kazandırdığı merkezkaç kuvvetlerinin bileşke fonksiyonudur. Budinamik hareketin çıktısı mühimmatlarda namlu önü emniyeti olarak adlandırılan,silah sistemi ve personeli atış esnasında her türlü olumsuz senaryolardagüvende kalmasını sağlayan bir emniyet parametresidir. Bu makalede tapalarıniçerisinde bulunan dişli çark sistemlerinin geometrilerinin bu emniyetparametrelerine ne düzeyde ve nasıl etki ettiklerinin çalışmaları yeralmaktadır. Buçalışmada, pandül ve çark ikilisinin birlikte çalıştığı temas noktalarının,kurulma süresine yani namlu önü emniyet mesafesine olan etkileriaraştırılmıştır. Pandül ve çark ikilisi,depolamadan güvenli atış yapılıncaya kadar geçen sürede, tapanınfonksiyon yapmasını engelleyerek silahlı kuvvetler personelinin vedonanımlarının güvenliğini sağlayan, güvenlik ve kurma mekanizması içerisindeyer almaktadır. Yapılan bu çalışmada, dönüsüz (kuyruk dengeli) havantapasındaki pandülün temas noktalarına farklı radiuslar verilerek kurulmasüreleri incelenmiştir. Yapılan çalışma sonucunda pandülün temas nokta radiusartışının kurulma süresini azalttığı, yani namlu önü emniyet mesafesini düşürdüğüsonucuna varılmıştır. KW - Tapa KW - Güvenlik ve Kurma Mekanizması KW - Pandül KW - Rotor KW - Hareket çarkı N2 - Inthe international arena, the defense industry, which is one of the main factorsdetermining the economic and political power of the countries, is constantly inneed of change, innovation and modernization in parallel with the technologicaldevelopments in the world. Our country, which is open to multi-faceted threatsin terms of its geopolitical and geostrategic position, must reach a militarypower with the ability and ability to support the national security policy anddevelop its military power in accordance with the requirements of the era. Inline with this importance and purpose, the reduction and increases in time,spin and distance are of great importance when the arming time and spin of thesafety arming mechanisms used in military-critical rifle and smoothboreammunition fuzes are fully determined and necessary. Thesubsystems of the fuzes, which are used in ammunition of large and medium caliber,which are called as the first firing system of ammunition; dynamic movements inthe internal mechanisms of the fuzes, which provide the critical balancebetween safety and functionality, are investigated. These dynamic movements arethe resultant function of the inertia forces of the ammunition at the time ofthe firing and the centrifugal forces that the barrel's groove sets impart tothe ammunition. The output of this dynamic movement is a safety parameter whichis called as front of barrel safety in ammunition, which ensures that theweapon system and personnel remain safe in all kinds of negative scenariosduring shooting. In this article, the effects of the geometries of the gearingsystems on the safety parameters on the fuzes are discussed.The pallet-wheel pair used in mechanical fuzes; They slow down the movement ofthe gear system, delaying the detonator on the rotor to come under the firingpin, thereby extending the safety distance to the front of the barrel. Themotion wheel and the pallet pair dampen the effects of high rotation andinertial forces and act as brakes. In thisstudy, the effects of contact points of the pallet and the escape wheel to thearming time that affects muzzle safety distance were investigated. Pallet and the escape wheel are situated inthe fuze safety and arming device that provides the security of the armedforces personnel and their equipment by preventing the function of the fuzefrom stockpile to safety seperation sequence. In this experimental study, differentradius were applied to the pallet contact points in the smoothbore mortar fuzesin order to investigate arming time differencies. Asa result of this study, it has become a guide for the revisions to be made on palletand wheel pair which are crititic in terms of installation time and frontbarrel safety in our existing mechanical impact mortar fuzes and new fuzedesigns. Integrating the revisions to the safety arming mechanism will be ofgreat importance in terms of safety and security. As a result of the studies,it has been observed that as the contact point radius of the pallet increases,the installation time decreases inversely, ie the safety distance of the frontof the barrel decreases. The determination of the net determination of theduration of the establishment and, where necessary, the shortening of time anddistance are of great importance. As result, it was concluded that the increasein the contact radius of the pallet reduces the arming time, which led themuzzle safety distance to decrease. In addition, this workis of great importance in order to prevent any fatal and wounded accident ofTurkish Armed Forces and Security Forces with mortar ammunition. CR - 1. Ardak M. B & Phate M. R. (2014). Mathematical Modeling and Computer Simulatio For Mechanical Timer Runway Escapement Mechanism. International Journal of Science, Engineering and Technology Research, 3(5), 1491-1497 2014. CR - 2. Rhode M., Geaney J. & Leng D. (2014). Collaboration For Fuzing Challenges. 57th NDIA Annual Fuze Conference, Newark, USA, 29-31. CR - 3. Overman D. (1971). Analysis Of M125 Booster Mechanism”. Harry Diamond Laboratories, Washington USA, Scientific Report, HDL-TR-1550, 1971. CR - 4. Lowen G. G. & Tepper F. R. (1978). Dynamics of Pin Pallet Runaway Escapement. Army armament research and development command dover, New york USA, Scientific Report, 07801, 1978. CR - 5. Cooper E. & Bobetsky A. (2003). Fuzing Innovations for Tomorrow’s Weapons. 47th NDIA Annual Fuze Conference, New Orleans, USA 8-10 April 2003. CR - 6. Lewis K. (2003). Enhancing Weapon Performance. 47th Annual Fuze Conference, New Orleans, USA 8-10 April 2003. CR - 7. Wagner J. (2006). 50 Years of Support Freedom. 50th Annual NDIA Fuze Conference, Norfolk, England 9-11 May 2006. CR - 8. Burke P. & Pergolizzi T. (2008). Smart Fuzing - Adding Intelligence to Fuzing Solutions. 52nd Annual Fuze Conference, Nevada, USA 13-15. CR - 9. Kautzsch K. (2008). Smart Fuzing - Adding Intelligence to Fuzing Solutions. 52nd Annual Fuze Conference, Nevada, USA 13-15. CR - 10. Fowler S. E. (2001). Safety and Arming Device Design Principles. Naval Air Warfare Center Weapons Division, China Lake USA, Scientific Report, Nawcwd Tp 8504. CR - 11. Finch C. D. (2003). Enhancing Weapon Performance. 47th Annual Fuze Conference, New Orleans, USA 8-10 April 2003. CR - 12. Hendershot J. (2012). Next Generation Fuzing For Next Generation Weapons. 56th Annual NDIA Fuze Conference, Baltimore, USA 14-16 May 2012. CR - 13. Ulamış F. (2012). Mühimmatlar için elektronik zaman ayarlı ateşleyici sistem tasarımı, , Kırıkkale Üniversitesi Fen Bilimleri Enstitüsü Yüksek Lisans Tezi. 121 s. CR - 14. Campion B. (2007). Changing Fuze Standards. 51st Annual NDIA Fuze Conference, Nashville, USA 22-24 May 2007. CR - 15. Kautzsch K. B. (2007). Changing Fuze Standards. 51st Annual NDIA Fuze Conference, Nashville, USA 22-24 May 2007. CR - 16. Will B. (2009). Changing Fuze Standards. 51st NDIA Fuze Conference, Nashville, USA 22-24 May 2007. CR - 17. Deeds M. A. & Cox A. (2009). Next Generation Fuzing - Maximum Advantage for the Warfighter. 53rd Annual Fuze Conference, Lake Buena Vista, USA 19-21 May 2009. CR - 18. Geaney J. (2009). Next Generation Fuzing - Maximum Advantage for the Warfighter. 53rd Annual Fuze Conference, Lake Buena Vista, USA 19-21 May 2009. CR - 19. Lewis K. (2003). Naval Surface Warfare Center Dahlgren 47th Annual Fuze Conference, Enhancing Weapon Performance, 8-10 Aralık 2003. CR - 20. Wagner J. (2006). Junghans Feinwerktechnik GmbH & Co. KG, 50th Annual NDIA Fuze Conference, Norfolk, VA, 2006. CR - 21. Pete B. & Tony P. (2008). XM1156 Precision Guidance Kit (PGK), Information Briefing for 52nd Annual Fuze Conference, 13 – 15 May 2008. CR - 22. Kautzsch K. (2008). Junghans Microtec, 52nd NDIA Annual Conference, 13-15 Mayıs 2008. CR - 23. Perrin M. (2017). Junghans Defence New Generation Fuzes to İmprove Munition Efficiency, Parari 2017, Canberra. UR - https://dergipark.org.tr/tr/pub/jonas/issue//592781 L1 - https://dergipark.org.tr/tr/download/article-file/888074 ER -