TY - JOUR T1 - Neutrosophic Metric Spaces and Fixed Point Results AU - Kirisci, Murat AU - Şimşek, Necip PY - 2019 DA - October Y2 - 2019 JF - Conference Proceedings of Science and Technology PB - Murat TOSUN WT - DergiPark SN - 2651-544X SP - 64 EP - 67 VL - 2 IS - 1 LA - en AB - In this paper, we define the neutrosophic contraction mapping and give a fixed point theorem in neutrsophic metric spaces. KW - Fixed point theorem KW - neutrosophic contraction KW - neutrosophic metric spaces CR - [1] K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 (1986), 87–96. CR - [2] K. Atanassov, G. Gargov, Interval valued intuitionistic fuzzy sets, Inf. Comp., 31 (1989), 343–349. CR - [3] T. Bera, N. K. Mahapatra, Neutrosophic soft linear spaces, Fuzzy Information and Engineering, 9 (2017), 299–324. CR - [4] T. Bera, n. K. Mahapatra, Neutrosophic soft normed linear spaces, Neutrosophic Sets and System, 23 (2018),52–71. CR - [5] A. George, P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets and Systems, 64 (1994), 395–399. CR - [6] A. George, P. Veeramani, On some results of analysis for fuzzy metric spaces, Fuzzy Sets and Systems, 90 (1997), 365–368. CR - [7] M. Ilkhan, E. E. Kara, On statistical convergence in quasi-metric spaces, Demonstr. Math., 52 (2019), 225–236, Doi: 10.1515/dema-2019-0019. CR - [8] O. Kaleva, S. Seikkala, On fuzzy metric spaces, Fuzzy Sets and Systems, 12 (1984), 215–229. CR - [9] M. Kiri¸sci, Integrated and differentiated spaces of triangular fuzzy numbers, Fas. Math. 59 (2017), 75–89. DOI:10.1515/fascmath-2017-0018. CR - [10] M. Kiri¸sci, Multiplicative generalized metric spaces and fixed point theorems, Journal of Mathematical Analysis, 8 (2017), 212–224. CR - [11] M. Kiri¸sci, N. Simsek, Neutrosophic metric spaces, arXiv preprint arXiv:1907.00798. CR - [12] I. Kramosil, J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetika, 11 (1975), 336–344. CR - [13] K. Menger, Statistical metrics, Proc. Nat. Acad. Sci., 28 (1942), 535–537. CR - [14] J. H. Park, Intuitionistic fuzzy metric spaces, Chaos, Solitons & Fractals, 22 (2004), 1039-1046. CR - [15] J. J. Peng, J. Q. Wang,J. Wang, H. Y. Zhang, X. H. Chen, Simplified neutrosophic sets and their applications in multi-criteria group decision-making problems, International Journal of Systems Science, 47 (2016), 2342-2358, Doi: 10.1080/00207721.2014.994050. CR - [16] M. Rafi, S. M. Noorani, Fixed point theorem on intuitionistic fuzzy metric spaces, Iranin J. Fuzzy Systems, 3 (2006, 23–29. CR - [17] F. Smarandache, Neutrosophic set, a generalisation of the intuitionistic fuzzy sets, Inter. J. Pure Appl. Math., 24 (2005), 287–297. CR - [18] F. A Smarandache, Unifying field in logics: Neutrosophic logic, neutrosophy, neutrosophic set, neutrosophic probability and statistics, Phoenix: Xiquan, 2003. CR - [19] I. Turksen, Interval valued fuzzy sets based on normal forms, Fuzzy Sets and Systems, 20 (1996), 191–210. CR - [20] H. Wang, F. Smarandache,Y. Q. Zhang,R. Sunderraman, Single valued neutrosophic sets, Multispace and Multistructure, 4 (2010), 410–413. CR - [21] R. R. Yager, Pythagorean fuzzy subsets, In: Proc Joint IFSA World Congress and NAFIPS Annual M eeting, Edmonton, Canada, 2013. CR - [22] J. A. Ye, Multicriteria decision-making method using aggregation operators for simplified neutrosophic sets, J. Intell. Fuzzy Syst., 26 (2014), 2459–2466. CR - [23] L. A. Zadeh, Fuzzy sets, Inf. Comp., 8 (1965), 338–353. UR - https://dergipark.org.tr/tr/pub/cpost/issue//596880 L1 - https://dergipark.org.tr/tr/download/article-file/843432 ER -