TY - JOUR T1 - CVD VE PECVD TEKNİĞİ KULLANILARAK BAKIR FOLYOLAR ÜZERİNDE GRAFEN NANOYAPILARIN ELDE EDİLMESİ VE KARAKTERİZASYONU TT - FABRICATION AND CHARACTERIZATION OF GRAPHENE NANOSTRUCTURE ON COPPER FOILS USING CVD AND PECVD TECHNIQUE AU - Bayram, Özkan AU - İğman, Erdal AU - Şimşek, Önder PY - 2019 DA - July Y2 - 2019 DO - 10.28948/ngumuh.598128 JF - Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi JO - NÖHÜ Müh. Bilim. Derg. PB - Niğde Ömer Halisdemir Üniversitesi WT - DergiPark SN - 2564-6605 SP - 1126 EP - 1134 VL - 8 IS - 2 LA - tr AB - Buçalışmada, CH4 gazı kullanılarak bakır folyolar üzerinde grafen incefilmlerin sentezlenmesi amaçlanmıştır. İnce filmlerin elde edilebilmesi içinplazma destekli kimyasal buhar biriktirme (PECVD) ve kimyasal buhar biriktirme(CVD) yöntemi kullanılmıştır. Bakır alt-taşlar, standart ön temizlikyapıldıktan sonra kuvars camdan yapılmış reaktöre yerleştirilmiştir. Vakumodasının taban basıncı 5-10 mTorr’a düşürüldükten ve hidrojen gazı ile tavlamaişlemi yapıldıktan sonra, CH4 gazı ortama gaz akış kontrol ünitesi yardımıylagönderilmiştir. PECVD sisteminde; RF güç kaynağı (13,56 MHz), kontrol ünitesivasıtasıyla aktif hale getirilerek, üretilen enerji ortama gönderilmiştir. İşlembasıncı 100 mTorr, sıcaklık 600 ˚C, RF gücü 50 W ve kaplama süresi ise20 dakika olarak ayarlanmıştır. CVD tekniğinde ise, RF gücü ortadan kaldırılmışve büyütme sıcaklığı 1000 ˚C olarak belirlenmiştir. Elde edilen Grafennanoyapıların karakterizasyonu için Raman, SEM ve TEM analizlerigerçekleştirilmiştir. Raman sonuçlarına göre, CVD yöntemiyle elde edilenyapılar, tek tabaka grafen yapısını doğrulamıştır. Bununla beraber PECVDtekniği ile tek tabaka grafen nanoyapılardan ziyade çok tabakalı yapı eldeedildi. KW - PECVD KW - CVD KW - Grafen KW - İnce Film N2 - In this study, it was aimedto synthesize graphene thin films on copper foils using CH4 gas.Plasma enhanced chemical vapor deposition (PECVD) and chemical vapor deposition(CVD) method were used to obtain thin films. Copper foils were placed in quartzreactor chamber after standard pre-cleaning. Then, the base pressure of thevacuum chamber was lowered to 5-10 mTorr. The foils was annealed with hydrogengas and CH4 gas was sent to the chamber by means of gas flowcontroller. In PECVD system; RF powersupply (13.56 MHz) was activated by the control unit and the plasma was beformed with generated energy. The deposition pressure was set to 100 mTorr, substrate temperature was 600 ˚C,RF power was 50 W and deposition time was 20 minutes. In the CVD technique, theRF power was eliminated and the deposition temperature was determined as 1000 ˚C.Raman, SEM and TEM analysis were performed for the characterization of theobtained graphene nanostructures. According to the results of Raman, the thinfilm obtained by the CVD method confirmed the single-layer graphene. However,single-layer graphene could not be obtained by PECVD technique. CR - [1] ALLEN, M. J., TUNG, V. C., KANER, R. B., "Honeycomb carbon: a review of graphene", Chemical Reviews, 110, 132-145, 2009. CR - [2] NETO, A.C., GUINEA, F., PERES, N.M., NOVOSELOV, K.S., GEIM, A.K., "The electronic properties of graphene", Reviews of Modern Physics, 81, 109-116, 2009. CR - [3] CHEN, J.H., JANG, S., XIAO, M., ISHIGAMI, M.S., Fuhrer, "Intrinsic and extrinsic performance limits of graphene devices on SiO 2", Nature Nanotechnology, 3, 206-213, 2006. CR - [4] DU, X., SKACHKO, I., DUERR, F., LUICAN, A., ANDREI E.Y., "Fractional quantum Hall effect and insulating phase of Dirac electrons in graphene", Nature, 462, 192, 2009. CR - [5] NAIR, R.R., BLAKE, P., GRIGORENKO, A.N., NOVOSELOV, K.S., BOOTH, T.J., STAUBER, T., PERES, N.M., GEIM, A.K., "Fine structure constant defines visual transparency of graphene", Science, 320, 1308-1308, 2008. CR - [6] BHUYAN, M. S. A., UDDIN, M. N., ISLAM, M. M., BIPASHA, F. A., HOSSAIN, S. S., "Synthesis of graphene ", International Nano Letters, 6, 65-83, 2016. CR - [7] NOVOSELOV, K. S., GEIM, A. K., MOROZOV, S. V., JIANG, D., ZHANG, Y., DUBONOS, S. V., GRIGORIEVA, I. V., FIRSOV, A. A., "Electric field effect in atomically thin carbon films", Science, 306, 666–669, 2004. CR - [8] LEE, H. C., LIU, W. W., CHAI, S. P., MOHAMED, A. R., AZIZ, A., KHE, C. S., HIDAYAH, N. M. S., HASHIM, U., "Review of the synthesis, transfer, characterization and growth mechanisms of single and multilayer graphene", RSC Advances, 7, 15644-15693, 2017. CR - [9] LI, X., CAI, W., AN, J., KIM, S., NAH, J., YANG, D.,PINER, R., VELAMAKANNI, A., JUNG, I., TUTUC, E., "Large-area synthesis of high-quality and uniform graphene films on copper foils", Science, 324, 1312-1314, 2009. CR - [10] LOGINOVA, E., BARTELT, N., FEIBELMAN, P., MCCARTY, K., "Factors influencing graphene growth on metal surfaces", New Journal of Physics, 11, 063046, 2009. CR - [11] LOSURDO, M., GIANGREGORIO, M.M., CAPEZZUTO, P., BRUNO, G., "Graphene CVD growth on copper and nickel: role of hydrogen in kinetics and structure", Physical Chemistry Chemical Physics, 13, 20836-20843, 2011. CR - [12] CHEN, H., ZHU, W., ZHANG, Z., "Contrasting behavior of carbon nucleation in the initial stages of graphene epitaxial growth on stepped metal surfaces", Physical Review Letters, 104, 186101, 2010. CR - [13] WANG, S., QIAO, L., ZHAO, C., ZHANG, X., CHEN, J., TIAN, H., ZHENG, W., HAN, Z., "A growth mechanism for graphene deposited on polycrystalline Co film by plasma enhanced chemical vapor deposition", New Journal of Chemistry, 37, 1616-1622, 2013. CR - [14] KIM, J., ISHIHARA, M., KOGA, Y., TSUGAWA, K., HASEGAWA, M., IJIMA, S., "Low-temperature synthesis of large-area graphene-based transparent conductive films using surface wave plasma chemical vapor deposition", Applied Physics Letters, 98, 091502, 2011. CR - [15] KATO, T., HATAKEYAMA, R., "Direct growth of doping-density-controlled hexagonal graphene on SiO2 substrate by rapid-heating plasma CVD", Acs Nano, 6, 8508-8515, 2012. CR - [16] KIM, Y.S., LEE, J.H., KIM, Y.D., JERNG, S.K., JOO, K., KIM, E., JUNG, J., YOON, E., PARK, Y.D., SEO, S., "Methane as an effective hydrogen source for single-layer graphene synthesis on Cu foil by plasma enhanced chemical vapor deposition", Nanoscale, 5, 1221-1226, 2013. CR - [17] PEKDEMIR, S., ONSES, M.S., HANCER, M., "Low temperature growth of graphene using inductively-coupled plasma chemical vapor deposition", Surface and Coatings Technology, 309, 814-819, 2017. CR - [18] COSTA, S.D., RIGHI, A., FANTINI, C., HAO, Y., MAGNUSON, C., COLOMBO, L., RUOFF, R.S., PIMENTA, M.A., "Resonant Raman spectroscopy of graphene grown on copper substrates", Solid State Communications, 152, 1317-1320, 2012. CR - [19] KALITA, G., WAKITA, K., UMENO, M., "Monolayer graphene from a green solid precursor", Physica E: Low-dimensional Systems and Nanostructures, 43, 1490-1493, 2011. CR - [20] VAN KHAI, T., KWAK, D. S., KWON, Y. J., CHO, H. Y., HUAN, T. N., CHUNG, H., HAM, H., LEE, C., VAN DAN, N., NGO, T. T., KIM, H. W., "Direct production of highly conductive graphene with a low oxygen content by a microwave-assisted solvothermal method", Chemical Engineering Journal, 232, 346-355, 2013. CR - [21] LISI, N., BUONOCORE, F., DIKONIMOS, T., LEONI, E., FAGGIO, G., MESSINA, G., MORANDI, V., ORTOLANI, L., CAPASSO, A., "Rapid and highly efficient growth of graphene on copper by chemical vapor deposition of ethanol", Thin Solid Films, 571, 139-144, 2014. UR - https://doi.org/10.28948/ngumuh.598128 L1 - https://dergipark.org.tr/tr/download/article-file/773086 ER -