TY - JOUR T1 - Special Helices on the Ellipsoid AU - Özdemir, Zehra PY - 2019 DA - November Y2 - 2019 JF - Conference Proceedings of Science and Technology PB - Murat TOSUN WT - DergiPark SN - 2651-544X SP - 153 EP - 157 VL - 2 IS - 2 LA - en AB - In this study, we investigate three types of special helices whose axis is a fixed constant Killing vector field on the Ellipsoid $% \mathbb{S}_{a_{1},a_{2},a_{3}}^{2}$ in $\mathbb{R}_{a_{1},a_{2},a_{3}}^{3}$. Then, we obtain the curvatures of all special helices on the ellipsoid $% \mathbb{S}_{a_{1},a_{2},a_{3}}^{2}$ and give some characterizations of these curves. Moreover, we present various examples and visualize their images using the Mathematica program. KW - Frame fields KW - Killing vector field KW - Special curves and surfaces. CR - [1] N. Ayyıldız , A. C. Çöken and Ahmet Yücesan, A Characterization of Dual Lorentzian Spherical Curves in the Dual Lorentzian Space, Taiwanese Journal of Mathematics, 11(4) (2007), 999-1018. CR - [2] R. A. Abdel Bakey, An Explicit Characterization of Dual Spherical Curve, Commun. Fac. Sci. Univ. Ank. Series, 51(2) (2002), 2, 1-9 CR - [3] S. Breuer, D. Gottlieb, Explicit Characterization of Spherical Curves, Proc. Am. Math. Soc. 27 (1971), 126-127. CR - [4] K. Ilarslan, Ç. Camci, H. Kocayigit, On the explicit characterization of spherical curves in 3-dimensional Lorentzian space, Journal of Inverse and Ill-posed Problems, 11 (2003), 4, pp. 389-397. CR - [5] S. Izumiya, N. Takeuchi, New Special Curves and Developable Surfaces, Turk. J. Math. 28 (2004), 153-163. CR - [6] O. Kose, An Expilicit Characterization of Dual Spherical Curves, Do˘ga Mat. 12(3) (1998), 105-113. CR - [7] M. Özdemir, An Alternative Approach to Elliptical Motion, Adv. Appl. Clifford Algebras 26 (2016), 279-304. CR - [8] Z. Özdemir, F. Ates, Trajectories of a point on the elliptical 2-sphere, arXiv:submit/2795112. CR - [9] P. D. Scofield, Curves of Constant Precession, Amer. Math. Monthly. 102(6)(1995), 531-537. CR - [10] Y. C. Wong, On an Explicit Characterization of Spherical Curves, Proc. Am. Math. Soc., 34(1) (1972), 239-242. CR - [11] Y. C. Wong, A global formulation of the condition for a curve to lie in a sphere, Monatsh. Math. 67 (1963), 363-365. UR - https://dergipark.org.tr/tr/pub/cpost/issue//610820 L1 - https://dergipark.org.tr/tr/download/article-file/861578 ER -