TY - JOUR T1 - Detecting Similarities of Bezier Curves for the Groups $LSim(E_{2}), LSim^{+}( E_{2})$ AU - Ören, İdris AU - İncesu, Muhsin PY - 2019 DA - November Y2 - 2019 JF - Conference Proceedings of Science and Technology PB - Murat TOSUN WT - DergiPark SN - 2651-544X SP - 129 EP - 133 VL - 2 IS - 2 LA - en AB - In this paper, for linear similarity groups, global invariants of plane Bezier curves ( plane polynomial curves) in $E_{2}$ are introduced. Using complex numbers and the global $G$-invariants of a plane Bezier curve( a plane polynomial curve), for given two plane Bezier curves (plane polynomial curves) $x(t)$ and $y(t)$, evident forms of all transformations $g\in G$, carrying $x(t)$ to $y(t)$, are obtained. KW - Polynomial curve KW - B\'{e}zier curve KW - Invariant KW - Linear similarity group CR - [1] R. P. Encheva and G. H. Georgiev, Similar Frenet curves, Result.Math, 55 (2009), 359-372. CR - [2] D. Khadjiev, İ. Ören, Ö. Pekşen, , Global invariants of path and curves for the group of all linear similarities in the two-dimensional Euclidean space, Int.J.Geo. Modern Phys, 15(6) (2018),1-28. CR - [3] M. İncesu, LS(2)􀀀Equivalence conditions of control points and application to planar Bézier curves, NTMSCI 5(3) (2017), 70-84. CR - [4] M. İncesu, Düzlemsel Bézier e˘grilerinin S(2) denklik ¸sartları, MSU J. of Sci., 5(2) (2018), 471-477. CR - [5] İ. Ören, , Equivalence conditions of two Bézier curves in the Euclidean geometry, Iran J Sci Technol Trans Sci., 42 (2018), 1563-1577. CR - [6] D. Marsh , Applied geometry for computer graphics and CAD, Springer-Verlag, London,1999. CR - [7] M. Berger, Geometry I, Springer-Verlag, Berlin Heidelberg, 1987. CR - [8] WK. Wang, H. Zhang, XM. Liu, JC. Paul, Conditions for coincidence of two cubic Bézier curves, J. Comput. Appl. Math.,235 (2011), 5198-5202 . CR - [9] J. Sanchez-Reyes, On the conditions for the coincidence of two cubic Bézier curves. J. Comput. Appl. Math.,236 (2011), 1675-1677. CR - [10] X.Chen, W. Ma, C. Deng, Conditions for the coincidence of two quartic Bézier curves. Appl Math Comput 225 (2013),731-736 . CR - [11] XD. Chen, C. Yang, W. Ma, Coincidence condition of two Bézier curves of an arbitrary degree, Comput. Graph 54 (2016),121-126 . UR - https://dergipark.org.tr/tr/pub/cpost/issue//612365 L1 - https://dergipark.org.tr/tr/download/article-file/861565 ER -