TY - JOUR T1 - Alzheimer Hastalığında Demirin Rolü TT - The Role of Iron in Alzheimer’s Disease AU - Kılıç, Fatma Sultan AU - Al, Mevra AU - Kılıç, Cansu PY - 2020 DA - March JF - Osmangazi Tıp Dergisi PB - Eskişehir Osmangazi Üniversitesi WT - DergiPark SN - 1305-4953 SP - 254 EP - 257 VL - 42 IS - 2 LA - tr AB - Alzheimer hastalığı(AH), demans tablosunun en sık nedeni (%60-80) olan kronik nörodejeneratif birhastalıktır. Her yıl tüm dünyada 4.6 milyon yeni AH olgusu geliştiği tahminedilmektedir. Hastalığın görülme riski yaşa bağlı olarak logaritmikbiçimde artar. Yaşı 60-65 arasında olan popülasyonda görülme sıklığıyaklaşık olarak %0.1 iken 85 yaşın üzerinde görülme sıklığı %47’ye kadarçıkar. Tanı konulmasında özel bir belirteç olmaması, bilim adamlarını farklıtanı yolları aramaya itmiştir. Bu nedenle yapılan incelemelerde serum demiri yüksekve transferrin saturasyonu düşük erişkinlerde nörolojik demansiyel hastalıklarınbaşlayabileceği ortalama 6 ay öncesinden öngörülebilmektedir. Serum demiri yüksekliğibeyin dokusunda da demir yüksekliğine yol açabilmektedir. Bu süreç, AH’de erkentanı açısından faydalı olacaktır. KW - Alzheimer hastalığı N2 - Alzheimer’sdisease is a chronical neurodegenerative disease and it is the most commanlyseen (%60-80) reason of dementia. It ispredicted that every year 4.6 million new cases occur around the world. Therisk increases logarithmically depending on age. The incidence is %0.1 betweenages 60-65 while it is %47 over age 85.Scientists are researching on differentdiagnostic methods since there isn’t a certain indicator for diagnosis.Research showed that blood iron levels increasing and transferrin saturationstarts decreasing 6 months before the neurogical demential diseases occur. Highiron levels in blood serum causes high iron levels in the brain tissue. Thisprocess will be useful for early diagnosis of AD. CR - 1. Sakurai H, Hanyu H, Iwamoto T. Toward defining the preclinical stages of Alzheimer’s disease. J Tokyo Med Univ. 2012;70(3):332–3. CR - 2. Sepulcre J, Grothe MJ, d’Oleire Uquillas F, Ortiz-Terán L, Diez I, Yang H-S, et al. Neurogenetic contributions to amyloid beta and tau spreading in the human cortex. Nat Med. 2018;24(12):1910–8. CR - 3. Crichton R. Inorganic Biochemistry of Iron Metabolism: From Molecular Mechanisms to Clinical Consequences. Chichester: John Wiley & Sons; 2009. 461 p. CR - 4. Ward RJ, Zucca FA, Duyn JH, Crichton RR, Zecca L. The role of iron in brain ageing and neurodegenerative disorders. Lancet Neurol. 2014 Oct;13(10):1045–60. CR - 5. Aoki S, Okada Y, Nishimura K, Barkovich AJ, Kjos BO, Brasch RC, et al. Normal deposition of brain iron in childhood and adolescence: MR imaging at 1.5 T. Radiology. 1989 Aug;172(2):381–5. CR - 6. Bartzokis G, Beckson M, Hance DB, Marx P, Foster JA, Marder SR. MR evaluation of age-related increase of brain iron in young adult and older normal males. Magn Reson Imaging. 1997;15(1):29–35. 7. Altamura S, Muckenthaler MU. Iron toxicity in diseases of aging: Alzheimer’s disease, Parkinson’s disease and atherosclerosis. J Alzheimer’s Dis. 2009;16(4):879–95. CR - 8. Roberts BR, Ryan TM, Bush AI, Masters CL, Duce JA. The role of metallobiology and amyloid-β peptides in Alzheimer’s disease. J Neurochem. 2012;120(SUPPL. 1):149–66. CR - 9. Good PF, Perl DP, Bierer LM, Schmeidler J. Selective accumulation of aluminum and iron in the neurofibrillary tangles of Alzheimer’s disease: a laser microprobe (LAMMA) study. Ann Neurol. 1992 Mar;31(3):286–92. CR - 10. Connor JR, Snyder BS, Beard JL, Fine RE, Mufson EJ. Regional distribution of iron and iron-regulatory proteins in the brain in aging and Alzheimer’s disease. J Neurosci Res. 1992 Feb;31(2):327–35. CR - 11. Smith MA, Harris PL, Sayre LM, Perry G. Iron accumulation in Alzheimer disease is a source of redox-generated free radicals. Proc Natl Acad Sci U S A. 1997 Sep 2;94(18):9866–8. CR - 12. Yamamoto A, Shin R-W, Hasegawa K, Naiki H, Sato H, Yoshimasu F, et al. Iron (III) induces aggregation of hyperphosphorylated tau and its reduction to iron (II) reverses the aggregation: implications in the formation of neurofibrillary tangles of Alzheimer’s disease. J Neurochem. 2002 Sep;82(5):1137–47. CR - 13. Huat TJ, Camats-perna J, Newcombe EA, Valmas N, Kitazawa M, Medeiros R. Metal Toxicity Links to Alzheimer’s Disease and Neuroinflammation. J Mol Biol. 2019;(xxxx):1–26. CR - 14. Silvestri L, Camaschella C. A potential pathogenetic role of iron in Alzheimer’s disease. J Cell Mol Med. 2008;12(5A):1548–50. CR - 15. Eder PS, Leiter L, Tanzi RE, Greig NH, Bush AI, Giordano T, et al. An Iron-responsive Element Type II in the 5′-Untranslated Region of the Alzheimer’s Amyloid Precursor Protein Transcript. J Biol Chem. 2002;277(47):45518–28. CR - 16. Tsokos M, Switzer R, Grinberg A, Love P, Tresser N, Rouault TA, et al. Targeted deletion of the gene encoding iron regulatory protein-2 causes misregulation of iron metabolism and neurodegenerative disease in mice. Nat Genet. 2001;27(2):209–14. CR - 17. Rouault T, Klausner R. Regulation of iron metabolism in eukaryotes. Curr Top Cell Regul. 1997;35:1–19. CR - 18. Hentze MW, Kühn LC. Molecular control of vertebrate iron metabolism: mRNA-based regulatory circuits operated by iron, nitric oxide, and oxidative stress. Proc Natl Acad Sci U S A. 1996 Aug 6;93(16):8175–82. UR - https://dergipark.org.tr/tr/pub/otd/issue//617697 L1 - https://dergipark.org.tr/tr/download/article-file/841699 ER -