TY - JOUR T1 - Iterative approximation of common fixed points of generalized nonexpansive maps in convex metric spaces AU - Babu, G. V. R. AU - Satyanarayana, Gedala PY - 2020 DA - June DO - 10.31197/atnaa.649269 JF - Advances in the Theory of Nonlinear Analysis and its Application JO - ATNAA PB - Erdal KARAPINAR WT - DergiPark SN - 2587-2648 SP - 112 EP - 120 VL - 4 IS - 2 LA - en AB - We define SP-iteration procedure associated with three self maps T1; T2; T3 definedon a nonempty convex subset of a convex metric space X and prove -convergence ofthis iteration procedure to a common fixed point of T1; T2; T3 under the hypotheses thateach Ti is either an -nonexpansive map or a Suzuki nonexpansive map in the settingof uniformly convex metric spaces. Also, we prove the strong convergence of this iterationprocedure to a common fixed point of T1; T2; T3 under certain additional hypothesesnamely either semicompact or condition (D). KW - SP-iteration procedure KW - \alpha-nonexpansive map KW - Suzuki nonexpansive map KW - common fixed point KW - \delta-convergence KW - strong convergence KW - uniformly convex metric space CR - Prof. Binayak S. Choudhury,Department of Mathematics,Bengal Engineering and Science University,Shibur, P. O.- B. Garden, Shibpur,West Bengal, India.E-mail: binayak12@yahoo.co.in CR - Prof. H. K. Pathak,School of studies in Mathematics,Pt. Ravishankar Shukla University,Chattisgarh, India.E-mail: hkpathak05@gmail.com CR - Prof. P. P. Murthy,Department of Pure and Applied Mathematics,Guru Ghasi Das University,Chattisgarh, India.E-mail: ppmurthy@gmail.com UR - https://doi.org/10.31197/atnaa.649269 L1 - http://dergipark.org.tr/tr/download/article-file/1071497 ER -