TY - JOUR T1 - Bazı Ultranormlu Uzaylar ve İzomorfikliği TT - The Some Ultranorm Spaces and Isomorphicity AU - Şanlıbaba, İbrahim PY - 2020 DA - June Y2 - 2020 DO - 10.35193/bseufbd.670679 JF - Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi PB - Bilecik Şeyh Edebali Üniversitesi WT - DergiPark SN - 2458-7575 SP - 265 EP - 272 VL - 7 IS - 1 LA - tr AB - Bu çalışmada metrik uzaylar, ultrametrik uzayları, normlu uzaylar ve ultranormlu uzaylar tanıtılıp aralarındaki ilişkiler ve örnekleri gösterildi. Ultranormlu uzaylarda izometri ve ultra izometri tanımları yapıldı. Sonra bazı ultranormlu uzaylara örnekler verilip ultra Banach uzay olduğu ve izomorfik olduğu gösterildi. KW - Ultrametrik KW - Ultranorm KW - Krull Sharpening KW - Ultra izometri KW - Ultra Banach Spaces N2 - In this study metric spaces, ultrametric spaces, normed spaces and ultranormed spaces are introduced and their relations between each other and examples are shown. Isometry and ultra isometry are defined in ultranormed spaces. Then some example of ultra-normed spaces are given and it is shown to be ultra Banach space and is isomorphic. CR - [1] Diagana, T. (2006). An Introduction to Classical and p-ADIC Theory of Linear Operators and Applications, by Nova Science Publishers Inc, ISBN 1-59454-424-7, New York. CR - [2] Krull, W. (1998). Ultrametric Triangle Inequality. Planet Math, Göttingen 1959.Li, G., Hart, A. ve Gregory, J., Flocculation and sedimentation, 295, Technomics Press. Lancaster PA. CR - [3] Ludkovsky. S., and Diarra, B. (2002). Spectral Integration and Spectral Theory for Non-Arcimedean Banach Spaces IJMMS 31,7, 421-442. CR - [4] Şanlıbaba, I. (2014). Ultrametric Banach space isomorphic to new spaces, Master’s thesis. Nevşehir Hacı Bektaş Veli University, Nevşehir. CR - [5] Bayraktar, M. (2006). Fonsiyonel Analiz. Gazi Kitabevi. Ankara. CR - [6] Nesin, A. (2012). Analiz IV. Nesin Matematik Köyü, İstanbul. CR - [7] Gajic, L. (2001). On Ultrametric Space, Novi Sad J. Match. 31, 2, 69-71. CR - [8] Diagana, T. (2006). c_0-Semigroups of Linear Operators on some Ultrametrıc Banach Space. IJMMS, DOI10. 1155/2006/52398. CR - [9] Diagana, T. (2007). Non-Arcimedean Linear Operators and Applications, by Nova Science Publishers Inc. ISBN 1-60021-405-3, New York. CR - [10] Diarra B. (1998). An Operatör on Ultrametric Hilbert Spaces. Journal of Analysis 6, 55-74. CR - [11] Kaplansky, I. (1972). Set Theory and Metric Spaces. AMS Chelsea Publishing, ISBN 0-8218-2694-8. CR - [12] Perez-Garcia, C., Schikhof, W. H. (2010). Locally Convex Spaces over Non-Archimedean Valued Fields. Cambridge University Press, 978-0-521-19243-9. CR - [13] Havinga, M. (2011). Ultrametric Matrices, Korteweg-de Vries Institute for Mathematics Faculty of Science. 5-14, 13. UR - https://doi.org/10.35193/bseufbd.670679 L1 - https://dergipark.org.tr/tr/download/article-file/1133963 ER -