TY - JOUR T1 - NUMERICAL INVESTIGATION OF THE EFFECTS OF CONE TIP DIAMETERS ON THE EFFICIENCY OF A CYCLONE SEPARATOR AU - Kaya, Alaattin Metin AU - Özkan, Musa PY - 2020 DA - December DO - 10.36222/ejt.732223 JF - European Journal of Technique (EJT) JO - EJT PB - Hibetullah KILIÇ WT - DergiPark SN - 2536-5010 SP - 395 EP - 401 VL - 10 IS - 2 LA - en AB - Cyclone separators, which are widely used in the cement industry, are very important in terms of preventing air pollution. Many studies on cyclone separators have been done for a long time by means of different models and with considering various parameters. Although much work has been done on the separators, there is no general agreement about the effect of the cone tip diameter on cyclone collection efficiency and / or a pressure drop. In this study, the effect of the cone tip diameter on the cyclone efficiency and the pressure drop was investigated in order to contribute to the literature in this regard. Geometries with four different cone tip diameters (60, 90, 120 and 150 mm) designed for this purpose were examined in three different flow rates and three different particle sizes (2, 4 and 6 µm). In Computational Fluid Dynamics (CFD) analysis, the turbulence was modeled using the Reynolds Stress Model (RSM). As a result of the study, it has been observed that the effect of the cone tip diameter has a non-ignorable importance at varying fluid inlet velocities and particle sizes. KW - Cyclone Separators KW - Reynolds Stress Model KW - cone tip diameter CR - [1] A. Kçpa. (2010). Division of outlet flow in a cyclone vortex finder - The CFD calculations, Sep. Purif. Technol., vol. 75, no. 2, pp. 127–131, 2010, doi: 10.1016/j.seppur.2010.08.009. CR - [2] P. Silva, C. Briens, and A. Bernis. (2003). Development of a new rapid method to measure erosion rates in laboratory and pilot plant cyclones, Powder Technol. - POWDER TECHNOL, vol. 131, pp. 111–119, Apr. 2003, doi: 10.1016/S0032-5910(02)00338-8. CR - [3] B. Zhao, H. Shen, and Y. Kang. (2004). Development of a symmetrical spiral inlet to improve cyclone separator performance, Powder Technol., vol. 145, no. 1, pp. 47–50, 2004, doi: 10.1016/j.powtec.2004.06.001. CR - [4] A. Avci and I. Karagoz. (2003). Effects of flow and geometrical parameters on the collection efficiency in cyclone separators, J. Aerosol Sci., vol. 34, pp. 937–955, Jul. 2003, doi: 10.1016/S0021-8502(03)00054-5. CR - [5] J. Chen, X. Lu, H. Liu, and C. Yang. (2006). Effect of the bottom-contracted and edge-sloped vent-pipe on the cyclone separator performance, Chem. Eng. J. - CHEM ENG J, vol. 129, pp. 85–90, May 2007, doi: 10.1016/j.cej.2006.11.005. CR - [6] F. Qian and M. Zhang. (2005). Study of the natural vortex length of a cyclone with response surface methodology, Comput. Chem. Eng., vol. 29, no. 10, pp. 2155–2162, 2005, doi: 10.1016/j.compchemeng.2005.07.011. CR - [7] B. Wang, D. L. Xu, K. W. Chu, and A. B. Yu. (2006). Numerical study of gas-solid flow in a cyclone separator, Appl. Math. Model., vol. 30, no. 11, pp. 1326–1342, 2006, doi: 10.1016/j.apm.2006.03.011. CR - [8] M. E. Caliskan, I. Karagoz, A. Avci, and A. Surmen. (2019). Investigation into the effects of various parameters on the performance and classification potential of a cyclone classifier, Powder Technol., vol. 356, pp. 102–111, 2019, doi: 10.1016/j.powtec.2019.07.104. CR - [9] Y. Zhu and K. W. Lee. (1999). Experimental study on small cyclones operating at high flowrates, J. Aerosol Sci., vol. 30, no. 10, pp. 1303–1315, 1999, doi: 10.1016/S0021-8502(99)00024-5. CR - [10] M. Azadi, M. Azadi, and A. Mohebbi. (2010). A CFD study of the effect of cyclone size on its performance parameters, J. Hazard. Mater., vol. 182, no. 1–3, pp. 835–841, 2010, doi: 10.1016/j.jhazmat.2010.06.115. CR - [11] K. W. Chu, B. Wang, D. L. Xu, Y. X. Chen, and A. B. Yu. (2010). CFD-DEM simulation of the gas-solid flow in a cyclone separator, Chem. Eng. Sci., vol. 66, no. 5, pp. 834–847, 2011, doi: 10.1016/j.ces.2010.11.026. CR - [12] K. Elsayed and C. Lacor. (2011). Numerical modeling of the flow field and performance in cyclones of different cone-tip diameters, Comput. Fluids, vol. 51, no. 1, pp. 48–59, 2011, doi: 10.1016/j.compfluid.2011.07.010. CR - [13] R. Xiang, S. H. Park, and K. W. Lee. (2001). Effects of cone dimension on cyclone performance, J. Aerosol Sci., vol. 32, pp. 549–561, Apr. 2001, doi: 10.1016/S0021-8502(00)00094-X. CR - [14] I. Karagoz and A. Avci. (2005). Modelling of the Pressure Drop in Tangential Inlet Cyclone Separators, Aerosol Sci. Technol., vol. 39, no. 9, pp. 857–865, Sep. 2005, doi: 10.1080/02786820500295560. CR - [15] J. Gimbun, T. G. Chuah, T. S. Y. Choong, and A. Fakhru’l-Razi. (2004). Prediction of the effects of cone tip diameter on the cyclone performance, J. Aerosol Sci., vol. 36, no. 8, pp. 1056–1065, 2005, doi: 10.1016/j.jaerosci.2004.10.014. UR - https://doi.org/10.36222/ejt.732223 L1 - https://dergipark.org.tr/tr/download/article-file/1087557 ER -