TY - JOUR T1 - Çoklu Füze Sistemleri için Güdüm Algoritması Tasarımı TT - Guidance Algorithm Design for Multi-Missile Systems AU - Tekin, Raziye AU - Erer, Koray Savaş PY - 2021 DA - May DO - 10.21205/deufmd.2021236810 JF - Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi JO - DEUFMD PB - Dokuz Eylül Üniversitesi WT - DergiPark SN - 1302-9304 SP - 469 EP - 477 VL - 23 IS - 68 LA - tr AB - Bu çalışmada, çoklu otonom sistemler için güdüm algoritma tasarımları sunulmuştur. Otonom sistem olarak jenerik bir füze ele alınmıştır. İlk olarak, eş zamanlı varış kontrolü için menzilin zamana bağlı genel bir polinom olarak şekillendirildiği bir güdüm tasarımı sunulmuştur. Sonrasında bir lider ve takipçilerden oluşan bir sistem için füze güdümü kullanılarak bir takip algoritması tasarımı önerilmiştir. Bunun için varış açısının kontrolünü sağlayan bir yöntem, lidere göre sabit olarak konumlandırılan bir sanal lideri kuyruk takibi modunda izlemek için kullanılmıştır. Her iki ortak saldırı yaklaşımında, otonom sisteme yeni üyeler, görev tanımları merkezi kontrol birimi ya da lider tarafından tanımlanarak dahil olabilirler. Önerilen yaklaşımlar füzeler için örneklenmiş olup, insansız hava araçlarında ve robotik alanında da kullanılabilir. KW - Çoklu otonom sistemler KW - Füze güdümü KW - Ortak saldırı KW - Varış zamanı KW - Varış açısı KW - Kuyruk takibi N2 - In this paper, guidance algorithms design for multi-autonomous systems is described. A generic missile is considered as an autonomous system. First, a guidance law, where the range is shaped as a function of time, is presented for salvo attack. Second, a tracking algorithm, which makes use of missile guidance algorithms, is proposed for a system consisting of a leader and followers. For this purpose, an impact angle control algorithm is used for tail chase tracking of the leader, where a virtual leader is attached to a fixed position of the leader. In each of these two approaches, new members can join the system, where the mission is defined from a central control unit or from a leader. The suggested approached is exemplified for missiles; however, they could be used in unmanned air vehicles and in robotics. CR - [1] Zhou, J., Yang, J., 2016. Distributed Guidance Law Design for Cooperative Simultaneous Attacks with Multiple Missiles. Journal of Guidance, Control, and Dynamics, Cilt. 39, No. 10, s. 2439–2447. DOI: 10.2514/1.G001609 CR - [2] Belanger, J., Desbiens, A., Gagnon, E. ,2007. UAV Guidance with Control of Arrival Time. American Control Conference, New York, USA, s. 4488-4493, . DOI: 10.1109/ACC.2007.4282775 CR - [3] Zarchan, P., Tactical and Strategic Missile Guidance, 6th ed., AIAA, Reston, VA, 2012. CR - [4] Jeon, I.-S., Lee, J.-I., Tahk, M.-J., 2016. Impact Time Control Guidance with Generalized Proportional Navigation Based on Nonlinear Formulation. Journal of Guidance, Control, and Dynamics, Cilt. 39, No. 8, s. 1887–1892. DOI: 10.2514/1.G001681 CR - [5] Tekin R,. Erer K.S., Holzapfel F., 2016. Control of Impact Time with Increased Robustness via Feedback Linearization. Journal of Guidance, Control, and Dynamics, Cilt. 39, No. 7, s. 1682–1689. DOI: 10.2514/1.G001719 CR - [6] Kim M., Jung, B., Han B., Lee S., Kim Y., 2015, Lyapunov-Based Impact Time Control Guidance Laws Against Stationary Targets. IEEE Transactions on Aerospace and Electronic Systems, Cilt. 51, No. 2, s. 1111–1122. DOI: 10.1109/TAES.2014.130717 CR - [7] Saleem A, Ratnoo A., 2016. Lyapunov-Based Guidance Law for Impact Time Control and Simultaneous Arrival. Journal of Guidance, Control, and Dynamics, Cilt. 39, No. 1, s. 164–173. DOI: 10.2514/1.G001349 CR - [8] Cho D, Kim HJ, Tahk MJ., 2016. Nonsingular Sliding Mode Guidance for Impact Time Control. Journal of Guidance, Control, and Dynamics, Cilt. 39, No. 1, s. 61–68. DOI: 10.2514/1.G001167 CR - [9] Kumar, S.R., Ghose, D. , 2015. Impact Time Guidance for Large Heading Errors Using Sliding Mode Control. IEEE Transactions on Aerospace and Electronic Systems, Cilt. 51, No. 4, s. 3123 – 3138. DOI: 10.1109/TAES.2015.140137 CR - [10] Tekin, R, Erer, K.S, Holzapfel, F. , 2017. Polynomial Shaping of the Look Angle for Impact Time Control. Journal of Guidance, Control, and Dynamics, Cilt. 40, No. 10, s. 266-273. DOI: 10.2514/1.G002751 CR - [11] Kim, H., Lee, J., Kim, H.J., Kwon, H., Park, J., 2019. Look-Angle-Shaping Guidance Law for Impact Angle and Time Control with Field-of-View Constraint. IEEE Transactions on Aerospace and Electronic Systems, Cilt. 56, No. 2, s. 1602-1612. DOI: 10.1109/TAES.2019.2924175 CR - [12] Erer KS. 2015. Biased Proportional Navigation Guidance for Impact Angle Control with Extension to Three-Dimensional Engagements, Doktora Tezi, Orta Doğu Teknik Üniversitesi, Ankaraa. CR - [13] Kim, B.S., Lee, J.G., Han, H.S., 1988. Biased PNG Law for Impact with Angular Constraint. IEEE Transactions on Aerospace and Electronic Systems, Cilt. 34, No. 1, s. 277–288. DOI: 10.1109/7.640285 CR - [14] Tekin R, Erer KS., 2015. Switched-Gain Guidance for Impact Angle Control Under Physical Constraints. Journal of Guidance, Control, and Dynamics, Cilt. 38, No. 2, s. 205–216. DOI: 10.2514/1.G000766 CR - [15] Ryoo, C.-K., Cho, H., Tahk, M.-J., 2005. Optimal Guidance Laws with Terminal Impact Angle Constraint. Journal of Guidance, Control, and Dynamics, Cilt. 28, No. 4, s. 724–732. DOI: 10.2514/1.8392 CR - [16] Ohlmeyer, E.J., Phillips, C.A., 2006. Generalized Vector Explicit Guidance. Journal of Guidance, Control, and Dynamics, Cilt. 29, No. 2, s. 261–268. DOI: 10.2514/1.14956 CR - [17] Yao, Z., Yongzhi, S., Xiangdong, L., 2014. Sliding Mode Control Based Guidance Law with Impact Angle. Chinese Journal of Aeronautics, Cilt. 27, No. 1, s. 145–152. DOI: 10.1016/j.cja.2013.12.011 CR - [18] Zhao, Y., Sheng, Y.Z., Liu, X.D., 2014. Sliding Mode Control Based Guidance Law with Impact Angle Constraint. Chinese Journal of Aeronautics, Cilt. 27, No. 1, s. 145–152. DOI: 10.1016/j.cja.2013.12.011 CR - [19] Kang, S., Tekin, R., Zhang, L., 2020, A Novel Approach for Impact Angle Control Under Look-Angle Constraint”. Chinese Journal of Aeronautics, submitted, 2020. CR - [20] Lee, C.H., Kim, T.H., Tahk M.J., Whang, I-H., 2013. Polynomial Guidance Laws Considering Terminal Impact Angle and Acceleration Constraints. IEEE Transactions on Aerospace and Electronic Systems, Cilt. 49, No. 1, 74–92. DOI: 10.1109/TAES.2013.6404092 CR - [21] Tekin R. 2018. A New Design Framework for Impact Time Control, Doktora Tezi, Münih Teknik Üniversitesi, Münih, Almanya. CR - [22]Zadka, B., Tripathy, T., Tsalik, R., Shima, T., 2020. A Max-Consensus Cyclic Pursuit Based Guidance Law for Simultaneous Target Interception, European Control Conference, accepted, St. Petersburg, Rusya. CR - [23]Tekin, R., Erer, K.S., Özgören, M.K., 2016. Biased Proportional Navigation with Exponentially Decaying Error for Impact Angle Control and Path Following, Proceedings of the 24th Mediterranean Control and Automation Conference, Atina, Yunanistan, 21-24 Haziran. DOI: 10.1109/MED.2016.7535911 CR - [24] Medagoda, E, Gibbens, P., 2010. Synthetic-Waypoint Guidance Algorithm for Following a DesiredFlight Trajectory. AIAA Journal of Guidance, Control, and Dynamics, Cilt. 33, No. 2, 601–606. DOI: 10.2514/1.46204 CR - [25] Lennox D., 2004. Cruise Missile Technologies and Performance Analysis. Jane's Strategic Weapon Systems, 40, Jane's Defense Data. UR - https://doi.org/10.21205/deufmd.2021236810 L1 - https://dergipark.org.tr/tr/download/article-file/1111221 ER -