TY - JOUR T1 - Yüksek iletkenliğe sahip farklı üç boyutlu grafen hidrojellerin hazırlanması TT - Preparation of high conductive different sizes of three dimensional graphene hydrogels AU - Harputlu, Ersan PY - 2021 DA - January Y2 - 2020 DO - 10.28948/ngumuh.742883 JF - Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi JO - NÖHÜ Müh. Bilim. Derg. PB - Niğde Ömer Halisdemir Üniversitesi WT - DergiPark SN - 2564-6605 SP - 420 EP - 425 VL - 10 IS - 1 LA - tr AB - Grafen tabakalarının üretim yöntemlerine bakıldığında hem kalite ve yüksek yüzey alanına sahip grafenin sentezlenmesi açısından Kimyasal Buhar Depolama (Chemical Vapor Deposition, CVD) tekniği en sık kullanılan yöntemlerin başında gelmektedir. Öte yandan, kimyasal yöntemler kullanılarak elde edilebilen grafen tabakalar büyük ölçeklerde ve düşük maliyetle hazırlanabilmektedir. Dolayısıyla grafit tabaklardan üç boyutlu grafen hidrojel yapılarını kimyasal olarak üretmek için tercih edilen ve günümüzde de hala oldukça yaygın bir şekilde kullanılan başlıca yöntem Hummer’s metodu ile elde edilen grafen oksit (GO) katmanların hidrotermal içerisinde grafen-hidrojelere (GH-H) dönüştürülmesidir. Çalışmanın amacı, farklı üç boyutlu grafen hidrojel yapılarının hidrotermal yöntemle hazırlanması ve boyutsal özelliklerinin incelenmesini içermektedir. Elde edilen ürünlerin uygulanan yöntem aşamalarına göre karakterizasyonları Ultraviyole ve görünür ışık absorpsiyon spektroskopisi (UV-Vis), Atomik Kuvvet Mikroskopu (AFM), X-Işını Kırınım (XRD) yöntemi, Alan Yayılımlı-Taramalı Elektron Mikroskobu (FE-SEM) ve Raman analizi kullanılarak yapılmıştır. KW - Grafit KW - Grafen Oksit KW - Grafen Hidrojel N2 - The production of graphene layers, both quality and high production cost, is obtained from Chemical Vapor Deposition (CVD) technique. On the other hand, graphene layers can be prepared using wet chemical methods on a large scale and at low cost. Therefore, the main method preferred for the chemical production of three-dimensional graphene hydrogel structures from graphite plates and still widely used today is the conversion of graphene oxide (GO) layers obtained by the Hummer's method to graphene hydrogel (GH-H) in hydrothermal. The aim of the study includes preparation of different three dimensional graphene hydrogel structures by hydrothermal method. Characterization of the products was made with the applied method steps, respectively; Ultraviolet and visible light absorption spectroscopy (UV-Vis), Atomic Force Microscope (AFM), X-Ray Diffraction (XRD), Field Emission-Scanning Electron Microscope (FE-SEM) and Raman analysis. CR - [1] H. Kuan-I, M. Boutchich, C.Y. Su, R. Moreddu, E.S.R. Marianathan, L. Montes and C.S. Lai, A self aligned high mobility graphene transistor: decoupling the channel with fluorographene to reduce scattering. Advanced Materials, 27, pp. 6519–25, 2015. https://doi.org/ 10.1002/adma.201502544 CR - [2] D.R. Cooper, B. D’Anjou, N. Ghattamaneni, B. Harack, M. Hilke, A. Horth, N. Majlis, M. Massicotte, L. Vandsburger, E. Whiteway and V. Yu, Experimental review of graphene. ISRN Condensed Matter Physics. International Scholarly Research Network, 1–56, 2012. https://doi.org/10.5402/2012/501686 CR - [3] P.R. Wallace, The band theory of graphite. Physical Review, 71, 622–34, 1947. CR - [4] B. Seger and P.V. Kamat, Electrocatalytically active graphene- platinum nanocomposites. role of 2-d carbon support in PEM Fuel Cells. J, Phys. Chem. C, 113, 7990-7995, 2009.https://doi.org/10.1021/jp900360k CR - [5] Y.J. Li, W. Gao, L.J. Ci, C.M. Wang and P.M. Ajayan, Catalytic performance of Pt nanoparticles on reduced graphene oxide for methanol electro-oxidation. Carbon, 48, 1124–1130, 2010. https://doi.org/10.1016/ j.carbon.2009.11.034 CR - [6] J. Du. H.M. Cheng, The fabrication, properties, and uses of graphene. Polymer Composites. Macromol. Chem. Phys., 213, 1060– 1077, 2012. https://doi.org/ 10.1002/macp.201200029 CR - [7] Y.J. Kim, B.K. Kim, Synthesis and properties of silanized waterborne polyurethane/graphene nanocomposites,. Colloid Polym. Sci., 292, 51–58, 2014. https://doi.org/10.1007/s00396-013- 3054-2 CR - [8] Y.W. Zhu, S. Murali, W.W. Cai, X.S. Li, J.W. Suk, J.R. Potts and R.S. Ruoff, Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater., vol. 22, 3906–24, 2010. CR - [9] M.J. Allen, V.C. Tung and R.B. Kaner, Honeycomb carbon: a review of graphene. chem. Rev., 110, 132–145, 2009. CR - [10] Y. Sun, Q. Wu, G. Shi, Graphene based new energy materials. Energy Environ. Sci., 4, 1113–32, 2011. https://doi.org/10.1039/C0EE00683A CR - [11] C.N.R. Rao, A.K. Sood, K.S. Subrahmanyam, A. Govindaraj, Graphene: the new two-dimensional nanomaterial. Angew. Chem., Int. Ed., vol. 48, pp. 7752–77, 2009. CR - [12] P.J. Hall, M. Mirzaeian, S.I. Fletcher, F.B. Sillars, A.J. R. Rennie, G.O. Shitta-Bey, G. Wilson, A. Cruden, and R. Carter, Energy storage in electrochemical capacitors: designing functional materials to improve performance. Energy Environ. Sci., 3, 1238–1251, 2010. https://doi.org/10.1039/C0EE00004C CR - [13] L.L. Zhang, R. Zhou and X.S. Zhao, Graphene-based materials as supercapacitor electrodes. J. Mater. Chem., 20, 5983–92, 2010. https://doi.org/ 10.1039/C000417K CR - [14] Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, and R.S. Ruoff, Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater., 22, 3906- 24,2010.https://doi.org/10.1002/adma.201001068 CR - [15] L. Zhang, G. Shi, Preparation of Highly Conductive Graphene Hydrogels for Fabricating Supercapacitors with High Rate Capability. J. Phys. Chem. C, 115, 17206–212, 2011. CR - [16] W.S. Hummers and R.E. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc., 80, 1339, 1958. https://doi.org/10.1021/ja01539a017 CR - [17] J. Meihua, H.K. Tae, C.L. Seong, L.D. Dinh, J.S. Hyeon, W.J. Young., K.J. Hae, C. Jian, X. Sishen, H.L. Young, Facile Physical Route to Highly Crystalline Graphene. Adv. Funct. Mater., 21, 3496–3501, 2011. CR - [18] H.A. Seyed, M.G. Mohsen, B.Z. Qing, K. Jang-Kyo, Spontaneous Formation of Liquid Crystals in Ultralarge Graphene Oxide Dispersions. Adv. Funct. Mater. 2011, 21,2978–88, 2011.https://doi.org/10.1002/adfm.20110 0448 CR - [19] S. Gurunathan, J.W. Han, V. Eppakayala, J.H. Kim, Microbial Reduction of Graphene Oxide by Escherichia coli: A Green Chemistry Approach. Colloids Surf. B, 102, 772–777, 2013. https://doi.org/10.1016/ j.colsurfb.2012.09.011 CR - [20] K. Krishnamoorthy, M. Veerapandian, R. Mohan, S. Kim, Investigation of Raman and photoluminescence studies of reduced graphene oxide sheets. Appl. Phys. A, 106, 501-6, 2012. CR - [21] M.S. Dresselhaus, A.J.H. Hofmann, G. Dresselhaus, R. Saito, Perspectives on carbon nanotubes and graphene raman spectroscopy. Nano Lett. 10, 751-58, 2010. https://doi.org/10.1021/nl904286r UR - https://doi.org/10.28948/ngumuh.742883 L1 - https://dergipark.org.tr/tr/download/article-file/1120268 ER -