TY - JOUR T1 - Linear Codes Over the Ring $Z_8+uZ_8+vZ_8$ AU - Çalışkan, Basri PY - 2020 DA - December Y2 - 2020 JF - Conference Proceedings of Science and Technology PB - Murat TOSUN WT - DergiPark SN - 2651-544X SP - 19 EP - 23 VL - 3 IS - 1 LA - en AB - In this paper, we introduce the ring $R=\mathbb{Z}_{8}+u\mathbb{Z}_{8}+v\mathbb{Z}_{8}$ where $u^{2}=u$, $v^{2}=v$, $uv=vu=0$ over which the linear codes are studied. it's shown that the ring $R=\mathbb{Z}_{8}+u\mathbb{Z}_{8}+v\mathbb{Z}_{8}$ is a commutative, characteristic 8 ring with $u^{2}=u$, $v^{2}=v$, $uv=vu=0$. Also, the ideals of $\mathbb{Z}_{8}+u\mathbb{Z}_{8}+v\mathbb{Z}_{8}$ are found. Moreover, we define the Lee distance and the Lee weight of an element of $R$ and investigate the generator matrices of the linear code and its dual. KW - Duality KW - Generator matrix KW - Lee weight KW - Linear codes over rings CR - 1 A.R. Hammons, V. Kumar, A.R. Calderbank, N.J.A. Sloane, P. Solé, The Z4 -linearity of Kerdock, Preparata, Goethals, and related codes, IEEE Trans. Inform. Theory, 40 (1994), 301-319. CR - 2 S.T.Dougherty, P. Gaborit, M. Harada, P.Solé, Type II codes over F2 + uF2, IEEE Trans. Inf. Theory 45 (1999), 32–45. CR - 3 B. Yildiz and S. Karadeniz, Linear Codes over Z4 + uZ4: MacWilliams Identities Projections, and Formally Self-Dual Codes, Finite Fields and Their Applications, 27 (2014), 24–40. CR - 4 V. Sison and M. Remillion, Isometries and binary images of linear block codes over Z4 + uZ4 and Z8 + uZ8, The Asian Mathematical Conference (AMC 2016), (2016), 313-318. CR - 5 A. Dertli and Y. Cengellenmis, On the Codes Over the Ring Z4 + uZ4 + vZ4 Cyclic, Constacyclic, Quasi-Cyclic Codes, Their Skew Codes, Cyclic DNA and Skew Cyclic DNA Codes, Prespacetime Journal, 10(2) (2019), 196-213. CR - 6 S.T. Dougherty T. A. Gulliver, J. Wong, Self-dual codes over Z8 and Z9, Designs, Codes and Cryptography, 41 (2006), 235-249. CR - 7 P. Li, X. Guo, S. Zhu, Some results of linear codes over the ring Z4 + uZ4 + vZ4 + uvZ4, Journal of Applied Mathematics and Computing, 54 (2017), 307–324. CR - 8 J. Wood, Duality for modules over finite rings and applications to coding theory, Am. J. Math., 121(3) (1999), 555–575. CR - 9 I. Aydoğdu, Bazı özel modüller üzerinde toplamsal kodlar, Ph. D, Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü, Istanbul, 2014. UR - https://dergipark.org.tr/tr/pub/cpost/issue//763109 L1 - https://dergipark.org.tr/tr/download/article-file/1184837 ER -