TY - JOUR T1 - How to extend Carathéodory's theorem to lattice-valued functionals AU - Agbeko, Nutefe Kwami PY - 2020 DA - September JF - Results in Nonlinear Analysis JO - RNA PB - Erdal KARAPINAR WT - DergiPark SN - 2636-7556 SP - 117 EP - 127 VL - 3 IS - 3 LA - en AB - Substituting in the definition of outer measure the addition with the maximum (or the supremum, or the join) operation we obtain a new set function called retuo measure. It is proved that every retuo measure is an outer measure. We give necessary and sufficient conditions for a set function to be a retuo measure. Similarly as in the case of outer measure, we propose a way to construct retuo measures. We consider some theoretical applications for constructed pairs of outer and retuo measures in the image of the Hausdorff measure and dimension. KW - outer mearsure KW - sigma-algebra KW - measurable sets KW - Hausdorff measure KW - Hausdorff dimension KW - Caratheodory-type theorem CR - [1] N.K. Agbeko, On optimal averages, Acta Math. Hungar. 63(2)(1994), 133–147. CR - [2] N.K. Agbeko, On the structure of optimal measures and some of its applications, Publ. Math. Debrecen 46(1-2)(1995), 79–87. CR - [3] V.I. Bogachev, Measure Theory, vol 1, Springer-Verlag Berlin Heidelberg 2007. CR - [4] C. Caratheodory, Vorlesungen über reelle Funktionen, Amer. Math. Soc. 2004. CR - [5] L. Drewnowski, A representation theorem for maxitive measures, Indag. Math. (N.S.), 20(1)(2009), 43–47. CR - [6] L.C. Evans, R.F. Gariepy, Measure Theory and Fine Properties of Functions, CRC Press, Inc., 1992. ISBN: 0-8493-7157-0 CR - [7] D. Harte, Multifractals. Theory and Applications, Chapman and Hall / Crc, Boca Raton London New York Washington D.C, 2001. ISBN 1-58488-154-2 CR - [8] A.N. Kolmogorov, and S.V. Fomin, Elements of the Theory of Functions and Functional Analysis, Graylack Press, Albany, N. Y. 1961. CR - [9] H. Lebesgue, Sur une generalistion de l’integrale definie, C.R. Acad.Sci. Paris 132(1901), 1025-1028. CR - [10] H. Lebesgue, Integrale, longueur, aire, Ann. Mat. Pura Appl. 7(1902), 231-359. CR - [11] J.C. Robinson, Dimensions, Embeddings, and Attractors, Cambridge University Press, Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Dubai, Tokyo, Mexico City, 2011. CR - [12] N. Shilkret, Maxitive measure and integration, Indag. Math., 33(1971), 109-116. CR - [13] E.M. Taylor, Measure theory and integration, Graduate Studies in Mathematics, 76, 2006. ISBN: 13 978-0-8218-4180-8. UR - https://dergipark.org.tr/tr/pub/rna/issue//763942 L1 - https://dergipark.org.tr/tr/download/article-file/1187107 ER -