@article{article_767700, title={Derin Sinir Ağları için Hiperparametre Metodlarının ve Kitlerinin İncelenmesi}, journal={Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi}, volume={12}, pages={187–199}, year={2021}, DOI={10.24012/dumf.767700}, author={Altun, Sara and Talu, Muhammed Fatih}, keywords={derin öğrenme ağları, hiperparametre, otomatik makine öğrenimi}, abstract={Otomatik makine öğrenimi (AutoML) ve derin sinir ağları birçok hiperparametreye sahiptir. Karmaşık ve hesapsal maliyet olarak pahalı makine öğrenme modellerine son zamanlarda ilginin artması, hiperparametre optimizasyonu (HPO) araştırmalarının yeniden canlanmasına neden olmuştur. HPO’un başlangıcı epey uzun yıllara dayanmaktadır ve derin öğrenme ağları ile popülaritesi artmıştır. Bu makale, HPO ile ilgili en önemli konuların gözden geçirilmesini sağlamaktadır. İlk olarak model eğitimi ve yapısı ile ilgili temel hiperparametreler tanıtılmakta ve değer aralığı için önemleri ve yöntemleri tartışılmaktadır. Sonrasında, özellikle derin öğrenme ağları için etkinliklerini ve doğruluklarını kapsayan optimizasyon algoritmalarına ve uygulanabilirliklerine odaklanılmaktadır. Aynı zamanda bu çalışmada HPO için önemli olan ve araştırmacılar tarafından tercih edilen HPO kitlerini incelenmiştir. İncelenen HPO kitlerinin en gelişmiş arama algoritmaları, büyük derin öğrenme araçları ile fizibilite ve kullanıcılar tarafından tasarlanan yeni modüller için genişletilebilme durumlarını karşılaştırmaktadır. HPO derin öğrenme algoritmalarına uygulandığında ortaya çıkan problemler, optimizasyon algoritmaları arasında bir karşılaştırma ve sınırlı hesaplama kaynaklarına sahip model değerlendirmesi için öne çıkan yaklaşımlarla sonuçlanmaktadır.}, number={2}, publisher={Dicle Üniversitesi}