TY - JOUR T1 - eg-Radical Supplemented Modules AU - Nebiyev, Celil AU - Ökten, Hasan Hüseyin PY - 2020 DA - December Y2 - 2020 JF - Conference Proceedings of Science and Technology PB - Murat TOSUN WT - DergiPark SN - 2651-544X SP - 37 EP - 41 VL - 3 IS - 1 LA - en AB - In this work, R will denote an associative ring with unity and all module are unital left R-modules. Let M be an R-module. If every essential submodule of M has a g-radical supplement in M, then M is called an essential g-radical supplemented (or briefly eg-radical supplemented) module. In this work, some properties of these modules are investigated. KW - Essential Submodules KW - g-Small Submodules KW - Generalized Radical KW - g-Supplemented Modules CR - 1 J. Clark, C. Lomp, N. Vanaja, R. Wisbauer, Lifting Modules Supplements and Projectivity In Module Theory, Frontiers in Mathematics, Birkhauser, Basel, 2006. CR - 2 B. Koşar, C. Nebiyev, N. Sökmez, g-Supplemented Modules, Ukrainian Math. J., 67(6) (2015), 861-864. CR - 3 B. Koşar, C. Nebiyev, A. Pekin, A Generalization of g-Supplemented Modules, Miskolc Math. Notes, 20(1) (2019), 345-352. CR - 4 C. Nebiyev, H. H. Ökten, Essential g-Supplemented Modules, Turkish St. Inf. Tech. and Appl. Sci., 14(1) (2019), 83-89. CR - 5 C. Nebiyev, H. H. Ökten, A. Pekin, Essential Supplemented Modules, Int. J. of Pure and Appl. Math., 120(2) (2018), 253-257. CR - 6 C. Nebiyev, H. H. Ökten, A. Pekin, Amply Essential Supplemented Modules, J. of Sci. Res. and Rep., 21(4) (2018), 1-4. CR - 7 W. Xue, Characterizations of Semiperfect and Perfect Rings, Publ. Mat., 40 (1996), 115-125. CR - 8 Y. Wang, N. Ding, Generalized Supplemented Modules, Taiwanese J. of Math., 10(6) (2006), 1589-1601. CR - 9 R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach, Philadelphia, 1991. UR - https://dergipark.org.tr/tr/pub/cpost/issue//778473 L1 - https://dergipark.org.tr/tr/download/article-file/1232840 ER -