TY - JOUR T1 - On the idempotents of semigroup of partial contractions of a finite chain TT - On the idempotents of semigroup of partial contractions of a finite chain AU - Zubairu, Muhammad Mansur AU - Ali, Bashir PY - 2021 DA - December Y2 - 2021 DO - 10.47495/okufbed.799385 JF - Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi JO - Osmaniye Korkut Ata University Journal of The Institute of Science and Techno PB - Osmaniye Korkut Ata Üniversitesi WT - DergiPark SN - 2687-3729 SP - 242 EP - 249 VL - 4 IS - 3 LA - en AB - Let $[n]=\{1,2,\ldots,n\}$ be a finite chain. Let $\mathcal{P}_{n}$ and $\mathcal{T}_{n}$ be Semigroups of partial and full transformations on $[n]$ respectively. Let $\mathcal{CP}_{n}=\{\alpha\in \mathcal{P}_{n}: |x\alpha-y\alpha|\leq|x-y| \ \ \forall x, y\in \dom~\alpha\}$ and $\mathcal{CT}_{n}=\{\alpha\in \mathcal{T}_{n}: |x\alpha-y\alpha|\leq|x-y| \ \ \forall x, y\in [n]\}$, then $\mathcal{CP}_{n}$ and $\mathcal{CT}_{n}$ are subsemigroups of $\mathcal{P}_{n}$ and $\mathcal{T}_{n}$ respectively. In this paper, we characterize the idempotent elements and computed the number of idempotents of height, $n-1$ and $n-2$ for the semigroups $\mathcal{CP}_{n}$ and $\mathcal{CT}_{n}$ respectively. KW - Transformations semigroup KW - Contractions maps KW - idempotents N2 - Let $[n]=\{1,2,\ldots,n\}$ be a finite chain. Let $\mathcal{P}_{n}$ and $\mathcal{T}_{n}$ be Semigroups of partial and full transformations on $[n]$ respectively. Let $\mathcal{CP}_{n}=\{\alpha\in \mathcal{P}_{n}: |x\alpha-y\alpha|\leq|x-y| \ \ \forall x, y\in \dom~\alpha\}$ and $\mathcal{CT}_{n}=\{\alpha\in \mathcal{T}_{n}: |x\alpha-y\alpha|\leq|x-y| \ \ \forall x, y\in [n]\}$, then $\mathcal{CP}_{n}$ and $\mathcal{CT}_{n}$ are subsemigroups of $\mathcal{P}_{n}$ and $\mathcal{T}_{n}$ respectively. In this paper, we characterize the idempotent elements and computed the number of idempotents of height, $n-1$ and $n-2$ for the semigroups $\mathcal{CP}_{n}$ and $\mathcal{CT}_{n}$ respectively. CR - Ali, B., Umar, A. and Zubairu, M. M. Regularity and Green’s relations on the semigroup of partial contractions of a finite chain. arXiv:1803.02146v1. CR - Adeshola, A. D. and Umar, A. Combinatorial results for certain semigroups of order-preserving full contraction mappings of a finite chain. J. Combin. Math. Combin. Comput. 106, (2018) 37-49. CR - Clifford, A. H. and Preston, G.B. The algebraic theory of semigroups, vol.1. Providence, R. I.: American Mathematical Society, 1961. CR - Garba, G. U. Idempotents in partial transformation semifroups. Proc. Roy. Soc. Edinburghn 116 A. (1990), 359-366. CR - Gracinda, M. S. Gomes and Howie, J. M. On the ranks of certain semigroups of order preserving transformations. Semigroup Forum 45 (1992), 272-282. CR - Ganyushkin, O. and Mazorchuk, V. Classical Finite Transformation Semigroups. Springer−Verlag: London Limited (2009). CR - Howie, J. M. Product of idempotents in certain semigroups of transformations. Proc. Edinburgh Math. Soc. 17 (1971) 223-236. CR - Howie, J. M . Fundamental of semigroup theory. London Mathematical Society, New series 12. The Clarendon Press, Oxford University Press, 1995. CR - Laradji, A. and Umar A. Combinatorial results for semifroups of order preserving partial transformations. Journal of Algebra 278 (2004), 342-358. CR - Tainter, T. A characterization of idempotents in semigroups. J. Combinatorial Theory 5 (1968) 370-373. CR - Umar, A. Some combinatorial problems in the theory of partial transformation semigroups. Journal of Algebra and Discrete Mathematics 17 (2014) 1 110-134. CR - Umar, A. and Zubairu, M. M. On certain semigroups of partial contractions of a finite chain. arXiv:1803.02604. CR - Umar, A. and Zubairu, M. M. On certain semigroups of full contractions of a finite chain. arXiv:1804.10057. UR - https://doi.org/10.47495/okufbed.799385 L1 - https://dergipark.org.tr/tr/download/article-file/1307229 ER -