TY - JOUR T1 - Generalized Quasi-Conformal Curvature Tensor On Normal Metric Contact Pairs TT - Kontakt Metrik Çiftler Üzerinde Genelleştirilmiş Quasi-Conformal Eğrilik Tensörü AU - Ünal, İnan PY - 2020 DA - December Y2 - 2020 DO - 10.29132/ijpas.803809 JF - International Journal of Pure and Applied Sciences PB - Munzur Üniversitesi WT - DergiPark SN - 2149-0910 SP - 194 EP - 199 VL - 6 IS - 2 LA - en AB - The aim of this paper is to examine normal metric contact pair (NMCP) manifolds under the flatness conditions ongeneralized quasi-conformal (GQC) curvature tensor. It is interested to classify GQC-flat and GQC-Z-flat NMCPmanifolds. We prove that a GQC-flat NMCP manifold is a generalized quasi-Einstein (GQE) manifold and also, suchmanifolds are the space of generalized quasi-constant curvature. Finally, we consider the sectional curvature of NMCPmanifolds under the flatness conditions of GQC curvature tensor. KW - Contact metric pair KW - generalized quasi-conformal curvature tensor KW - curvature properties N2 - Bu çalışmanın amacı, normal metrik kontakt çift (NMCP) manifoldlarını genelleştirilmiş quasi-conformal eğrilik(GQC) tensörünün sıfırlık koşulları altında incelemektir. Bu kapsamda GQC-düz ve GQC-Z-düz NMCP manifoldları ileilgilenilmiştir. Bir GQC-düz manifoldun genelleştirilmiş yarı-Einstein (GQE) manifold olduğu ve bu çeşit manifoldlarıngenelleştirilmiş yarı-sabit eğriliğe sahip olduğu ispatlanmıştır. Son olarak, GQC eğrilik tensörünün düzlük şartları altında,NMCP manifoldlarının kesitsel eğrilikleri ele alınmıştır. CR - Acet, B. E. 2018. A note on Ricci solitons on para-Sasakian manifolds. Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi 11.2 237-242. CR - Baishya, K. K. and Chowdhury P.R., 2016. On generalized quasi-conformal N (k, µ)-manifolds. Commun. Korean Math. Soc 31.1 163-176. CR - Baishya, K. K. and Chowdhury P.R., 2017 Kenmotsu manifolds equipped with generalized quasi-conformal curvature tensor. Global Journal of Pure and Applied Mathematics 13.6 : 2493-2502. CR - Baishya, K. K. and Chowdhury P.R., 2017 Semi-symmetry type LP-Sasakian manifolds. Acta Mathematica Academiae Paedagogicae Nyregyhaziensis 33 (2017): 67-83. CR - Baishya, K. K. 2017. Ricci solitons in Sasakian manifold. Afrika Matematika 28.7-8 : 1061-1066. CR - Bande, G. and Hadjar, A. 2005. Contact pairs Tohoku Mathematical Journal, Second Series, 57(2), 247-260. CR - Bande, G. and Hadjar, A. 2009. Contact pair structures and associated metrics In Differential Geometry (pp. 266-275). CR - Bande, G. and Hadjar, A. 2010. On normal contact pairs International Journal of Mathematics, 21(06), 737-754. CR - Bande, G., Blair, D. E. and Hadjar, A. 2013. On the curvature of metric contact pairs Mediterranean journal of mathematics, 10(2), 989-1009. CR - Bande, G., Blair, D.E. 2013. Symmetry in the geometry of metric contact pairs. Math. Nachr. 286, 1701–1709 CR - Bande, G., Blair, D. E. and Hadjar, A. 2015. Bochner and conformal flatness of normal metric contact pairs, Annals of Global Analysis and Geometry, 48(1), 47-56. CR - Blair, D. E., Ludden G. D., and Yano, K. 1974. Geometry of complex manifolds similar to the Calabi-Eckmann manifolds Journal of Differential Geometry, 9(2), 263-274. CR - De, U. C. and Ghosh, G. C., 2004. “On generalized quasi–Einstein manifolds”, Kyungpook Math. J. 44 , 607–615. CR - Ünal, İ. 2020. Some flatness conditions on normal.metric.contact Pairs Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics. 69(2): 262-271. CR - Ünal, İ. 2020. Generalized Quasi-Einstein Manifolds in Contact Geometry. Mathematics, 8(9), 1592. CR - Ünal, İ . 2020. On Metric Contact Pairs with Certain Semi-Symmetry Conditions. Politeknik Dergisi (In press) UR - https://doi.org/10.29132/ijpas.803809 L1 - http://dergipark.org.tr/tr/download/article-file/1322555 ER -