TY - JOUR T1 - Nonlinear Integrodifferential Equations with Time Varying Delay AU - Kumar, Rakesh AU - Kumar, Kamalendra AU - Karnatak, Manoj PY - 2021 DA - September DO - 10.31197/atnaa.814109 JF - Advances in the Theory of Nonlinear Analysis and its Application JO - ATNAA PB - Erdal KARAPINAR WT - DergiPark SN - 2587-2648 SP - 433 EP - 444 VL - 5 IS - 3 LA - en AB - By practicing the manner of semigroup theory and Banach contraction theorem, the existence and uniqueness of mild and classical solutions of nonlinear integrodifferential equations with time varying delay in Banach spaces is showed. Certainly, an example is revealed to justify the abstract idea.By practicing the manner of semigroup theory and Banach contraction theorem, the existence and uniqueness of mild and classical solutions of nonlinear integrodifferential equations with time varying delay in Banach spaces is showed. Certainly, an example is revealed to justify the abstract idea. KW - Nonlinear integrodifferential equations KW - Time varying delay KW - Nonlocal condition KW - Mild and classical solution KW - Banach contraction theorem CR - Hamdy M. Ahmed, Boundary controllability of impulsive nonlinear fractional delay integro-differential system, Cogent Engineering 3:1, DOI: 10.1080/23311916.2016.1215766. CR - H. Akca, V. Covachev and Z. Covacheva, Existence theorem for a second-order impulsive functional-differential equation with a nonlocal condition, J. Nonlinear Convex Anal. 17 (2016), no. 6, 1129–1136. CR - K. Balachandran and E.R. Anandhi, Boundary controllability of delay integrodifferential systems in Banach spaces, J. Korean Soc. Ind. Appl. Math. 4 (2000), no. 2, 67–75. CR - K. Balachandran and M. Chandrasekaran, Existence of solutions of delay differential equation with nonlocal condition, Indian J. Pure Appl. Math. 27 (1996), no. 5, 443– 449. CR - K. Balachandran and R.R. Kumar, Existence of solutions of integrodifferential evolution equations with time varying delays, Appl. Math. E-Notes 7 (2007), 1–8. CR - L. Byszewski, Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem, J. Math. Anal. Appl. 162 (1991), no. 1, 496–505. CR - X. Fu and X. Liu, Existence of solutions for neutral non-autonomous evolution equations with nonlocal conditions, Indian J. Pure Appl. Math. 37 (2006), no. 3, 179–192. CR - K. Kumar and R. Kumar, Controllability results for general integrodifferential evolution equations in Banach space, Differ. Uravn. Protsessy Upr. 2015 (2015), no. 3, 1–15. CR - D.G. Park, K. Balachandran and F.P. Samuel, Regularity of solutions of abstract quasilinear delay integrodifferential equations, J. Korean Math. Soc. 48 (2011), no. 3, 585–597. CR - A. Pazy, Semigroup of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983. CR - T. Winirska, Nonlinear evolution equation with parameter, Bull. Pol. Acad. Sci. Math. 37 (1989), 157–162. CR - S. Xie, Existence of solutions for nonlinear mixed type integro-differential functional evolution equations with nonlocal conditions, Bound. Value Probl. 2012 (2012), 100. https://doi.org/10.1186/1687-2770-2012-100. CR - Z. Yan, Existence for a nonlinear impulsive functional integrodifferential equation with nonlocal conditions in Banach spaces, J. Appl. Math. Inform. 29 (2011), no. 3-4, 681–696. UR - https://doi.org/10.31197/atnaa.814109 L1 - https://dergipark.org.tr/tr/download/article-file/1356397 ER -