TY - JOUR T1 - Experimental Analysis of PV/T Collectors Assisted with PCM for Off-Grid Domestic Applications TT - Şebekeden Bağımsız Ev Tipi Uygulamaları için PCM Destekli PV/T Kollektörlerinin Deneysel Analizi AU - Bakır, Eda AU - Bayrak, Fatih AU - Öztop, Hakan PY - 2021 DA - April DO - 10.31590/ejosat.841922 JF - Avrupa Bilim ve Teknoloji Dergisi JO - EJOSAT PB - Osman SAĞDIÇ WT - DergiPark SN - 2148-2683 SP - 627 EP - 636 IS - 23 LA - en AB - An experimental study was carried out to examine the efficiency of solar energy in photovoltaic thermal collectors (PV/T) with energy storage. A photovoltaic thermal collector was used to generate both electrical energy and hot water. The effects of inclination angle of PV/T collectors on power, temperature, energy and exergy values were investigated. Also, effects of cellular shading are tested and discussed. PV/T was compared with the conventional PV/T collector by adding phase change material (PCM) for one of the collectors. In addition, the effect of different shading conditions (small, medium and large circle) on the power and hot water output of the PV/T collector at optimum slope angle were investigated. It is found that 7 ºC temperature differences are occurred in the hot water outlet between the PV/T collector and the PV/T-PCM collector. The highest energy efficiencies of PV/T-PCM collectors are obtained as 73.26%, 84.70% and 68.96% for slope angle 25º, 30º and 35º, respectively. The highest exergy efficiencies of shaded collectors are obtained as 11.92% for PV/T and 23.38% for PV/T-PCM. KW - Photovoltaic/Thermal KW - Phase Change Material KW - Angle KW - Energy KW - Exergy KW - Shading N2 - Enerji depolamalı fotovoltaik termal kollektörlerde (PV/T) güneş enerjisinin verimini incelemek için deneysel bir çalışma yapılmıştır. Hem elektrik enerjisi hem de sıcak su üretmek için bir fotovoltaik termal kollektör imal edilmiştir. PV/T kollektörlerinin eğim açısının; güç, sıcaklık, enerji ve ekserji değerlerine etkileri ile hücresel gölgelendirmenin etkileri araştırılmıştır. PV/T kollektörlerden birinin içine faz değişim malzemesi (PCM) eklenerek PV/T kollektörüyle karşılaştırılarak farklı gölgeleme koşullarının (küçük, orta ve büyük daire) PV/T kollektörünün optimum eğim açısındaki gücü ve sıcak su çıkışı üzerindeki etkisi araştırılmıştır. PV/T kollektörü ile PV/T-PCM kollektörü arasındaki sıcak su çıkışında 7 ºC sıcaklık farkı oluştuğu bulunmuştur. PV/T-PCM kollektörünün en yüksek enerji verimleri sırasıyla 25º, 30º ve 35º eğim açısı için %73,26, %84,70 ve %68,96 olarak elde edilmiştir. Gölgeli kollektörlerin en yüksek ekserji verimleri ise PV/T kollektör için % 11,92 ve PV/T-PCM kollektörü için ise %23,38 olarak bulunmuştur. CR - Agrawal, S., Tiwari, G.N., 2011. Energy and exergy analysis of hybrid micro-channel photovoltaic thermal module. Solar Energy 85, 356–370. https://doi.org/10.1016/j.solener.2010.11.013 CR - Al-Waeli, A.H.A., Kazem, H.A., Yousif, J.H., Chaichan, M.T., Sopian, K., 2020. Mathematical and neural network modeling for predicting and analyzing of nanofluid-nano PCM photovoltaic thermal systems performance. Renewable Energy 145, 963–980. https://doi.org/10.1016/j.renene.2019.06.099 CR - Bayrak, F., Abu-Hamdeh, N., Alnefaie, K.A., Öztop, H.F., 2017a. A review on exergy analysis of solar electricity production. Renewable and Sustainable Energy Reviews 74, 755–770. https://doi.org/10.1016/j.rser.2017.03.012 CR - Bayrak, F., Ertürk, G., Oztop, H.F., 2017b. Effects of partial shading on energy and exergy efficiencies for photovoltaic panels. Journal of Cleaner Production 164, 58–69. https://doi.org/10.1016/j.jclepro.2017.06.108 CR - Bayrak, F., Oztop, H.F., Selimefendigil, F., 2020. Experimental study for the application of different cooling techniques in photovoltaic (PV) panels. Energy Conversion and Management 212, 112789. https://doi.org/10.1016/j.enconman.2020.112789 CR - Bayrak, F., Oztop, H.F., Selimefendigil, F., 2019. Effects of different fin parameters on temperature and efficiency for cooling of photovoltaic panels under natural convection. Solar Energy 188, 484–494. https://doi.org/10.1016/j.solener.2019.06.036 CR - Browne, M.C., Norton, B., McCormack, S.J., 2016. Heat retention of a photovoltaic/thermal collector with PCM. Solar Energy 133, 533–548. https://doi.org/10.1016/j.solener.2016.04.024 CR - Dhimish, M., Holmes, V., Mather, P., Sibley, M., 2018a. Novel hot spot mitigation technique to enhance photovoltaic solar panels output power performance. Solar Energy Materials and Solar Cells 179, 72–79. https://doi.org/10.1016/j.solmat.2018.02.019 CR - Dhimish, M., Holmes, V., Mehrdadi, B., Dales, M., Mather, P., 2018b. PV output power enhancement using two mitigation techniques for hot spots and partially shaded solar cells. Electric Power Systems Research 158, 15–25. https://doi.org/10.1016/j.epsr.2018.01.002 CR - Dolara, A., Lazaroiu, G.C., Leva, S., Manzolini, G., 2013. Experimental investigation of partial shading scenarios on PV (photovoltaic) modules. Energy 55, 466–475. https://doi.org/10.1016/j.energy.2013.04.009 CR - Elsheniti, M.B., Hemedah, M.A., Sorour, M.M., El-Maghlany, W.M., 2020. Novel enhanced conduction model for predicting performance of a PV panel cooled by PCM. Energy Conversion and Management 205, 112456. https://doi.org/10.1016/j.enconman.2019.112456 CR - Esen, H., 2008. Experimental energy and exergy analysis of a double-flow solar air heater having different obstacles on absorber plates. Building and Environment 43, 1046–1054. https://doi.org/10.1016/j.buildenv.2007.02.016 CR - Fayaz, H., Rahim, N.A., Hasanuzzaman, M., Nasrin, R., Rivai, A., 2019a. Numerical and experimental investigation of the effect of operating conditions on performance of PVT and PVT-PCM. Renewable Energy 143, 827–841. https://doi.org/10.1016/j.renene.2019.05.041 CR - Fayaz, H., Rahim, N.A., Hasanuzzaman, M., Rivai, A., Nasrin, R., 2019b. Numerical and outdoor real time experimental investigation of performance of PCM based PVT system. Solar Energy 179, 135–150. https://doi.org/10.1016/j.solener.2018.12.057 CR - Fudholi, A., Zohri, M., Jin, G.L., Ibrahim, A., Yen, C.H., Othman, M.Y., Ruslan, M.H., Sopian, K., 2018. Energy and exergy analyses of photovoltaic thermal collector with ∇-groove. Solar Energy 159, 742–750. https://doi.org/10.1016/j.solener.2017.11.056 CR - Gan, G., Xiang, Y., 2020. Experimental investigation of a photovoltaic thermal collector with energy storage for power generation, building heating and natural ventilation. Renewable Energy 150, 12–22. https://doi.org/10.1016/j.renene.2019.12.112 CR - Gani, A., Açıkgöz, H., Şekkeli, M., 2020. Fotovoltaik Sistemlerde Değişken Yük ve Güneş Işınımı Altında Sinirsel-Bulanık Denetleyici ile Maksimum Güç Noktası Takibi Maximum Power Point Tracking with Neuro-Fuzzy Controller Under Variable Load and Solar Irradiance in Photovoltaic Systems 734–745. https://doi.org/10.31590/ejosat.748384 CR - Hasan, A., Sarwar, J., Alnoman, H., Abdelbaqi, S., 2017. Yearly energy performance of a photovoltaic-phase change material (PV-PCM) system in hot climate. Solar Energy 146, 417–429. https://doi.org/10.1016/j.solener.2017.01.070 CR - Hemmat Esfe, M., Kamyab, M.H., Valadkhani, M., 2020. Application of nanofluids and fluids in photovoltaic thermal system: An updated review. Solar Energy 199, 796–818. https://doi.org/10.1016/j.solener.2020.01.015 CR - Hepbasli, A., 2008. A key review on exergetic analysis and assessment of renewable energy resources for a sustainable future. Renewable and Sustainable Energy Reviews 12, 593–661. https://doi.org/10.1016/j.rser.2006.10.001 CR - Holman, J.P., 1994. Experimental Methods for Engineers, sixth ed. ed. McGraw-Hill. CR - Hossain, M.S., Pandey, A.K., Selvaraj, J., Abd, N., Islam, M.M., Tyagi, V. V, 2019. Two side serpentine fl ow based photovoltaic-thermal-phase change materials ( PVT-PCM ) system : Energy , exergy and economic analysis. Renewable Energy 136, 1320–1336. https://doi.org/10.1016/j.renene.2018.10.097 CR - Hussain, F., Othman, M.Y.H., Yatim, B., Ruslan, H., Sopian, K., Anuar, Z., Khairuddin, S., 2015. An improved design of photovoltaic/thermal solar collector. Solar Energy 122, 885–891. https://doi.org/10.1016/j.solener.2015.10.008 CR - Kayabaşı, R., Kaya, M., 2019. Fotovoltaik Modüllerin Atık Isılarından Termoelektrik Jeneratör İle Elektrik Üretimi. European Journal of Science and Technology 310–324. https://doi.org/10.31590/ejosat.562859 CR - Kazemian, A., Salari, A., Hakkaki-Fard, A., Ma, T., 2019. Numerical investigation and parametric analysis of a photovoltaic thermal system integrated with phase change material. Applied Energy 238, 734–746. https://doi.org/10.1016/j.apenergy.2019.01.103 CR - Khanna, S., Reddy, K.S., Mallick, T.K., 2018. Optimization of solar photovoltaic system integrated with phase change material. Solar Energy 163, 591–599. https://doi.org/10.1016/j.solener.2018.01.002 CR - Klugmann-Radziemska, E., Wcisło-Kucharek, P., 2017. Photovoltaic module temperature stabilization with the use of phase change materials. Solar Energy 150, 538–545. https://doi.org/10.1016/j.solener.2017.05.016 CR - Petela, R., 2008. An approach to the exergy analysis of photosynthesis. Solar Energy 82, 311–328. https://doi.org/10.1016/j.solener.2007.09.002 CR - Qiu, Z., Ma, X., Zhao, X., Li, P., Ali, S., 2016. Experimental investigation of the energy performance of a novel Micro-encapsulated Phase Change Material (MPCM) slurry based PV/T system. Applied Energy 165, 260–271. https://doi.org/10.1016/j.apenergy.2015.11.053 CR - Rajput, P., Tiwari, G.N., Sastry, O.S., 2016. Thermal modelling and experimental validation of hot spot in crystalline silicon photovoltaic modules for real outdoor condition. Solar Energy 139, 569–580. https://doi.org/10.1016/j.solener.2016.10.016 CR - Rezvanpour, M., Borooghani, D., Torabi, F., Pazoki, M., 2020. Using CaCl2·6H2O as a phase change material for thermo-regulation and enhancing photovoltaic panels’ conversion efficiency: Experimental study and TRNSYS validation. Renewable Energy 146, 1907–1921. https://doi.org/10.1016/j.renene.2019.07.075 CR - Sarafraz, M.M., Safaei, M.R., Leon, A.S., Tlili, I., Alkanhal, T.A., Tian, Z., Goodarzi, M., Arjomandi, M., 2019. Experimental investigation on thermal performance of a PV/T-PCM (photovoltaic/thermal) system cooling with a PCM and nanofluid. Energies 12, 1–16. https://doi.org/10.3390/en12132572 CR - Selimefendigil, F., Bayrak, F., Oztop, H.F., 2018. Experimental analysis and dynamic modeling of a photovoltaic module with porous fins. Renewable Energy 125, 193–205. https://doi.org/10.1016/J.RENENE.2018.02.002 CR - Silvestre, S., Chouder, A., 2008. Effects of shadowing on photovoltaic module performance. Progress in Photovoltais: Research and Applications 16, 141–149. https://doi.org/10.1002/pip CR - Solanki, S.C., Dubey, S., Tiwari, A., 2009. Indoor simulation and testing of photovoltaic thermal (PV/T) air collectors. Applied Energy 86, 2421–2428. https://doi.org/10.1016/j.apenergy.2009.03.013 CR - Su, D., Jia, Y., Alva, G., Liu, L., Fang, G., 2017. Comparative analyses on dynamic performances of photovoltaic–thermal solar collectors integrated with phase change materials. Energy Conversion and Management 131, 79–89. https://doi.org/10.1016/j.enconman.2016.11.002 CR - Tiwari, A., Dubey, S., Sandhu, G.S., Sodha, M.S., Anwar, S.I., 2009. Exergy analysis of integrated photovoltaic thermal solar water heater under constant flow rate and constant collection temperature modes. Applied Energy 86, 2592–2597. https://doi.org/10.1016/j.apenergy.2009.04.004 CR - Tiwari, A., Sodha, M.S., 2006. Performance evaluation of solar PV/T system: An experimental validation. Solar Energy 80, 751–759. https://doi.org/10.1016/j.solener.2005.07.006 CR - Zhao, J., Li, Z., Ma, T., 2019. Performance analysis of a photovoltaic panel integrated with phase change material. Energy Procedia 158, 1093–1098. https://doi.org/10.1016/j.egypro.2019.01.264 UR - https://doi.org/10.31590/ejosat.841922 L1 - http://dergipark.org.tr/tr/download/article-file/1452399 ER -