TY - JOUR T1 - Invitro Decontamination Effect of Zinc Oxide Nanoparticles (ZnO-NPs) on Important Foodborne Pathogens TT - Çinko Oksit Nanopartiküllerin (ZnO-NP) Önemli Gıda Kaynaklı Patojenler Üzerine İn Vitro Kontaminasyon Etkisi AU - Kevenk, Tahsin Onur AU - Koluman, Ahmet PY - 2021 DA - June DO - 10.35864/evmd.861846 JF - Etlik Veteriner Mikrobiyoloji Dergisi JO - J. Etlik Vet. Mic. PB - Veteriner Kontrol Merkez Araştırma Enstitüsü WT - DergiPark SN - 1016-3573 SP - 1 EP - 5 VL - 32 IS - 1 LA - en AB - Zinc oxide (ZnO) has been used for many years in the pharmaceutical, cosmetic, paint, textile, and food industries for coating surfaces, absorbing UV rays and due to its antimicrobial properties in nanoscale it has been identified as important chemical for decontamination. Zinc can be found in many foods as well and its allowed daily intake for adults has been reported as 8-11 mg. Zinc Oxide Nanoparticles (ZnO-NPs) are generally regarded as safe (GRAS) for it being stable under hard processing conditions. Compared to organic acids, ZnO-NPs have better durability, selectivity, and heat resistance. In the present study, it was aimed to understand the decontamination effect of ZnO-NPs on S. enteritidis, S. typhimurium, S. aureus, L. monocytogenes, and E. coli O157 to develop novel, safe decontamination agents for food industry. For this purpose, KW - Zinc oxide KW - Nanoparticles KW - Foodborne KW - Pathogens KW - Decontamination N2 - Çinko oksit (ZnO) ilaç, kozmetik, boya, tekstil ve gıda endüstrilerinde yüzeyleri kaplamak, UV ışınlarını absorbe etmek için uzun yıllardır kullanılmaktadır. Aynı zamanda nano ölçekte antimikrobiyal özellikleri nedeniyle dekontaminasyon için de önemli bir kimyasal olarak tanımlanmıştır. Çinko, birçok besinde bulunan bir element olup, yetişkinler için izin verilen günlük alım miktarı 8-11 mg olarak bildirilmiştir. Çinko Oksit Nanopartiküller (ZnO-NP'ler) ise zorlu gıda işleme koşulları altında stabil kalabilmeleri nedeniyle genellikle güvenli olarak (GRAS) kabul edilmişlerdir. Organik asitlerle karşılaştırıldığında, ZnO-NP'lerin dayanıklı, seçici ve ısıya daha dirençli oldukları belirlenmiştir. Çalışmamızda, ZnO-NP'lerin S. enteritidis, S. typhimurium, S. aureus, L. monocytogenes ve E. coli O157 üzerindeki dekontaminasyon etkisini anlamak ve dekontaminasyon amacıyla yeni, güvenli ajanlar geliştirmek hedeflenmiştir. Bu amaçla, antimikrobiyal etkinin anlaşılması için Tryptic Soy Broth içerisine nihai konsantrasyonu 20 mMolar olacak şekilde CR - Baek, Y.-W., & An, Y.-J. (2011). Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO, and Sb2O3) to Escherichia coli, Bacillus subtilis, and Streptococcus aureus. Science of The Total Environment, 409(8), 1603-1608. doi:https://doi.org/10.1016/j.scitotenv.2011.01.014 CR - Balaban, N., & Rasooly, A. (2000). Staphylococcal enterotoxins. International Journal of Food Microbiology, 61(1), 1-10. doi:https://doi.org/10.1016/S0168-1605(00)00377-9 CR - Bharat, T. C., Shubham, Mondal, S., S.Gupta, H., Singh, P. K., & Das, A. K. (2019). Synthesis of Doped Zinc Oxide Nanoparticles: A Review. Materials Today: Proceedings, 11, 767-775. doi:https://doi.org/10.1016/j.matpr.2019.03.041 CR - Dar, M. A., Ahmad, S. M., Bhat, S. A., Ahmed, R., Urwat, U., Mumtaz, P. T., . . . Ganai, N. A. (2017). Salmonella typhimurium in poultry: a review. World's Poultry Science Journal, 73(2), 345-354. doi:10.1017/S0043933917000204 CR - Das, S., Sinha, S., Das, B., Jayabalan, R., Suar, M., Mishra, A., . . . Tripathy, S. K. (2017). Disinfection of Multidrug Resistant Escherichia coli by Solar-Photocatalysis using Fe-doped ZnO Nanoparticles. Scientific Reports, 7(1), 104. doi:10.1038/s41598-017-00173-0 CR - Deshmukh, S. P., Patil, S. M., Mullani, S. B., & Delekar, S. D. (2019). Silver nanoparticles as an effective disinfectant: A review. Materials Science and Engineering: C, 97, 954-965. doi:https://doi.org/10.1016/j.msec.2018.12.102 CR - El-Mashad, H. M., & Pan, Z. (2015). Food Decontamination Using Nanomaterials. MOJ Food Processing & Technology, 1(2). doi:10.15406/mojfpt.2015.01.00011 CR - Fonseca, B. B., Silva, P. L. A. P. A., Silva, A. C. A., Dantas, N. O., de Paula, A. T., Olivieri, O. C. L., . . . Goulart, L. R. (2019). Nanocomposite of Ag-Doped ZnO and AgO Nanocrystals as a Preventive Measure to Control Biofilm Formation in Eggshell and Salmonella spp. Entry Into Eggs. Frontiers in Microbiology, 10(217). doi:10.3389/fmicb.2019.00217 CR - Gandhi, M., & Chikindas, M. L. (2007). Listeria: A foodborne pathogen that knows how to survive. International Journal of Food Microbiology, 113(1), 1-15. doi:https://doi.org/10.1016/j.ijfoodmicro.2006.07.008 CR - Habeeb Rahman, A. P., Misra, A. J., Das, S., Das, B., Jayabalan, R., Suar, M., . . . Tripathy, S. K. (2018). Mechanistic insight into the disinfection of Salmonella sp. by sun-light assisted sonophotocatalysis using doped ZnO nanoparticles. Chemical Engineering Journal, 336, 476-488. doi:https://doi.org/10.1016/j.cej.2017.12.053 CR - Hajipour, M. J., Fromm, K. M., Akbar Ashkarran, A., Jimenez de Aberasturi, D., Larramendi, I. R. d., Rojo, T., Mahmoudi, M. (2012). Antibacterial properties of nanoparticles. Trends in Biotechnology, 30(10), 499-511. doi:https://doi.org/10.1016/j.tibtech.2012.06.004 CR - Hakeem, M. J., Feng, J., Nilghaz, A., Ma, L., Seah, H. C., Konkel, M. E., & Lu, X. (2020). Active Packaging of Immobilized Zinc Oxide Nanoparticles Controls <span class="named-content genus-species" id="named-content-1">Campylobacter jejuni</span> in Raw Chicken Meat. Applied and Environmental Microbiology, 86(22), e01195-01120. doi:10.1128/AEM.01195-20 CR - Hennekinne, J.-A., De Buyser, M.-L., & Dragacci, S. (2012). Staphylococcus aureus and its food poisoning toxins: characterization and outbreak investigation. FEMS Microbiology Reviews, 36(4), 815-836. doi:10.1111/j.1574-6976.2011.00311.x CR - Hur, J., Jawale, C., & Lee, J. H. (2012). Antimicrobial resistance of Salmonella isolated from food animals: A review. Food Research International, 45(2), 819-830. doi:https://doi.org/10.1016/j.foodres.2011.05.014 CR - ISO, T. E. (2014). Microbiology of the food chain - Horizontal method for the enumeration of microorganisms - Part 1: Colony count at 30 degrees C by the pour plate technique. In (Vol. 4833-1). CR - Kevenk, T. O., & Terzi Gulel, G. (2016). Prevalence, Antimicrobial Resistance and Serotype Distribution of Listeria monocytogenes Isolated from Raw Milk and Dairy Products. Journal of Food Safety, 36(1), 11-18. doi:https://doi.org/10.1111/jfs.12208 CR - Khare, P., Sonane, M., Nagar, Y., Moin, N., Ali, S., Gupta, K. C., & Satish, A. (2015). Size dependent toxicity of zinc oxide nano-particles in soil nematode Caenorhabditis elegans. Nanotoxicology, 9(4), 423-432. doi:10.3109/17435390.2014.940403 CR - Liu, Y., He, L., Mustapha, A., Li, H., Hu, Z. Q., & Lin, M. (2009). Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157:H7. Journal of Applied Microbiology, 107(4), 1193-1201. doi:https://doi.org/10.1111/j.1365-2672.2009.04303.x CR - Mirhosseini, M., & Arjmand, V. (2014). Reducing Pathogens by Using Zinc Oxide Nanoparticles and Acetic Acid in Sheep Meat. Journal of Food Protection, 77(9), 1599-1604. doi:10.4315/0362-028x.Jfp-13-210 CR - Peng, Y.-H., Tsai, Y.-C., Hsiung, C.-E., Lin, Y.-H., & Shih, Y.-h. (2017). Influence of water chemistry on the environmental behaviors of commercial ZnO nanoparticles in various water and wastewater samples. Journal of Hazardous Materials, 322, 348-356. doi:https://doi.org/10.1016/j.jhazmat.2016.10.003 CR - Prev CDC (2019). Surveillance for Foodborne Disease Outbreaks United States, 2017: Annual Report. CR - Rajput, V. D., Minkina, T. M., Behal, A., Sushkova, S. N., Mandzhieva, S., Singh, R., . . . Movsesyan, H. S. (2018). Effects of zinc-oxide nanoparticles on soil, plants, animals and soil organisms: A review. Environmental Nanotechnology, Monitoring & Management, 9, 76-84. doi:https://doi.org/10.1016/j.enmm.2017.12.006 CR - Soenen, S. J., Rivera-Gil, P., Montenegro, J.-M., Parak, W. J., De Smedt, S. C., & Braeckmans, K. (2011). Cellular toxicity of inorganic nanoparticles: Common aspects and guidelines for improved nanotoxicity evaluation. Nano Today, 6(5), 446-465. doi:https://doi.org/10.1016/j.nantod.2011.08.001 CR - Tayel, A. A., El-Tras, W. F., Moussa, S., El-Baz, A. F., Mahrous, H., Salem, M. F., & Brimer, L. (2011). Antibacterial Action of Zinc Oxide Nanoparticles against Foodborne Pathogens. Journal of Food Safety, 31(2), 211-218. doi:10.1111/j.1745-4565.2010.00287.x CR - Wu, S., Duan, N., Gu, H., Hao, L., Ye, H., Gong, W., & Wang, Z. (2016). A Review of the Methods for Detection of Staphylococcus aureus Enterotoxins. Toxins, 8(7), 176. Retrieved from https://www.mdpi.com/2072-6651/8/7/176 CR - Yadav T., M. A. A., Mungray A.K. (2014). Fabricated Nanoparticles: Current Status and Potential Phytotoxic Threats. In W. D. (Ed.), Reviews of Environmental Contamination and Toxicology volume. Reviews of Environmental Contamination and Toxicology (Vol. 230, pp. 83-110): Springer, Cham. UR - https://doi.org/10.35864/evmd.861846 L1 - http://dergipark.org.tr/tr/download/article-file/1511614 ER -