TY - JOUR T1 - Açık Kaynak Doğal Dil İşleme Kütüphaneleri TT - Open Source Natural Language Processing Libraries AU - Yılmaz, Havva AU - Yumuşak, Semih PY - 2021 DA - April Y2 - 2021 DO - 10.47769/izufbed.879217 JF - İstanbul Sabahattin Zaim Üniversitesi Fen Bilimleri Enstitüsü Dergisi JO - IZUJIST PB - İstanbul Sabahattin Zaim Üniversitesi WT - DergiPark SN - 2667-792X SP - 81 EP - 85 VL - 3 IS - 1 LA - tr AB - Doğal dil işleme, dil bileşenlerinin hem şekilsel hem de anlamsal olarak analiz edildiği yöntemlere verilen isimdir. Doğal dil işleme yöntemleri sürekli güncellenmekte ve yeni yöntemler geliştirilmektedir. Bu çalışmada, doğal dil işlemede kullanılan güncel ve popüler kütüphaneler ve bu kütüphanelerde kullanılan yöntemler incelenmiştir. Farklı yöntem ve kütüphaneler karşılaştırmalı olarak açıklanmıştır. KW - Doğal dil işleme KW - Doğal dil işleme kütüphaneleri KW - Makine öğrenmesi N2 - Natural language processing is a collection of methods in which language components are analyzed both syntactically and semantically. This study presents the set of tools and libraries classified as natural language processing methods. Current and popular libraries used in natural language processing and the methods used in these libraries are comperatively explained. CR - Aggarwal, C. C., & Zhai, C. (2012). A survey of text classification algorithms. In Mining text data (pp. 163-222). Springer, Boston, MA. CR - Akbik, Roland, (2018). Flair A very simple framework for state-of-the-art NLP, 2020. [Çevrimiçi]: https://github.com/flairNLP/flair CR - Barrus, (2018). Pyspellchecker Pure python spell checker based on work by Peter Norvig, 2020. [Çevrimiçi]: https://pypi.org/project/pyspellchecker/ CR - Bora, (2020). Zemberek Parser , 2019. [Çevrimiçi]: https://github.com/kemalcanbora/zemberek\_parser CR - Buitinck, Louppe, (2013). Scikit-learn 0.23.2 Machine Learning in Python, 2020. [Çevrimiçi]: https://scikit-learn.org/stable/ CR - Bird, (2019). Natural Language Toolkit, 2020. [Çevrimiçi]: http://www.nltk.org CR - Cambria, E., Poria, S., Gelbukh, A., & Thelwall, M. (2017). Sentiment analysis is a big suitcase. IEEE Intelligent Systems, 32(6), 74-80. CR - Chowdhary, (2020). Natural language processing. In Fundamentals of Artificial Intelligence (pp. 603-649). Springer, New Delhi. CR - Çetinkaya, (2018). Turkish NLP, 2020. [Çevrimiçi]: https://pypi.org/project/turkishnlp/ CR - David, 2020. How many languages in the world. [Çevrimiçi]: https://www.ethnologue.com/guides/how-many-languages CR - Dehkharghani, Rahim & Saygin, Yucel & Yanikoglu, Berrin & Oflazer, Kemal. (2015). SentiTurkNet: a Turkish polarity lexicon for sentiment analysis. Language Resources and Evaluation. 50. 10.1007/s10579-015-9307-6. CR - Eryiğit, G. (2014, April). ITU Turkish NLP web service. In Proceedings of the Demonstrations at the 14th Conference of the European Chapter of the Association for Computational Linguistics (pp. 1-4). CR - Gardner, (2017). A natural language processing platform for building state-of-the-art models. 2020. [Çevrimiçi]: https://allennlp.org/ CR - Honnibal, Matthew, (2017). Spacy Industrial-Strength Natural Language Processing in Python, 2020. [Çevrimiçi]: https://spacy.io/ CR - Howard, (2017). Fast.ai , 2020. [Çevrimiçi]: https://www.fast.ai/ CR - Jivani, A. G. (2011). A comparative study of stemming algorithms. Int. J. Comp. Tech. Appl, 2(6), 1930-1938. CR - Koksal, (2018). GitHub - akoksal/Turkish-Lemmatizer: Lemmatization for Turkish Language, 2018. [Çevrimiçi]: https://github.com/akoksal/Turkish-Lemmatizer CR - Liang, J., Koperski, K., Dhillon, N. S., Tusk, C., & Bhatti, S. (2013). U.S. Patent No. 8,594,996. Washington, DC: U.S. Patent and Trademark Office. CR - Lorai, (2013). TextBlob: Simplified Text Processing, 2020. [Çevrimiçi]: https://textblob.readthedocs.io/en/dev/ CR - Majumder, P., Mitra, M., & Chaudhuri, B. B. (2002). N-gram: a language independent approach to IR and NLP. In International conference on universal knowledge and language. CR - McClosky,,Bauer, (2014). Stanford CoreNLP: A Java suite of core NLP tools. 2020. [Çevrimiçi]: https://github.com/stanfordnlp/CoreNLP CR - Onaldi, (2018). Turkish Stemmer, 2019. [Çevrimiçi]: https://github.com/otuncelli/turkish-stemmer-python/ CR - Paszke, (2017). Pytorch/pytorch: Tensors and Dynamic neural networks in Python with strong GPU acceleration, 2020. [Çevrimiçi]: https://github.com/pytorch/pytorch CR - Radim, Sojka, (2008). Gensim 3.8.3 Python framework for fast Vector Space Modelling, 2020. [Çevrimiçi]: https://pypi.org/project/gensim/ CR - Sciforce, (2020). Text Preprocessing for NLP and Machine Learning Tasks [Çevrimiçi]: https://medium.com/sciforce/text-preprocessing-for-nlp-and-machine-learning-tasks-3e077aa4946e CR - Sun, Q., Wang, B., Gu, Z., & Fu, Y. (2018). VECTORIZATION METHODS IN RECOMMENDER SYSTEM. CR - Webster, (1992). Tokenization as the initial phase in NLP. In COLING 1992 Volume 4: The 15th International Conference on Computational Linguistics. CR - Zemberek, (2007). NLP tools for Turkish. [Çevrimiçi]: https://github.com/ahmetaa/zemberek-nlp UR - https://doi.org/10.47769/izufbed.879217 L1 - http://dergipark.org.tr/tr/download/article-file/1573501 ER -