TY - JOUR T1 - Yara Örtü Materyallerinde Aktif Ajan Olarak Kullanılmak Üzere Jelatin Kaplı Gümüş Nanoparçacıkların Sentezlenmesi ve Karakterizasyonu TT - Synthesis and Characterization of Gelatin Coated Silver Nanoparticles for Use as Active Agent in Wound Dressing Materials AU - Gün Gök, Zehra PY - 2021 DA - October DO - 10.35414/akufemubid.889646 JF - Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi PB - Afyon Kocatepe Üniversitesi WT - DergiPark SN - 2149-3367 SP - 1247 EP - 1258 VL - 21 IS - 5 LA - tr AB - Bu çalışmada, yara örtü materyallerinde antimikrobiyal ajan olarak kullanılabilecek jelatin kaplı gümüş nanopartiküller (J-AgNPs) sentezlemek için jelatin proteini hem indirgeme hem de kaplama ajanı olarak kullanılmıştır. J-AgNPs sentezi için, %1’lik jelatin çözeltisi ile belirli derişimde AgNO3 çözeltisi karıştırılmış ve karışım 2 saat boyunca 100 °C’de inkübe edilmiştir. Jelatin çözeltisi eklenen gümüş nitrat çözeltilerinde gözlemlenen sarı renge-kahve renge dönüşüm, Ag(I) iyonunun Ag(0)’a indirgenmiş olduğunu göstermektedir. Bu renk değişimi olduktan sonra, karışım 8 saat boyunca oda sıcaklığında karıştırılmaya devam edilmiştir. J-AgNPs komplekslerinin 300 ile 600 nm arasındaki absorbans spektrası UV-Vis spektrofotometre ile ölçülerek gözlemlenen yüzey plazmon pikleri ile AgNPs oluşumu tespit edilmiştir. J-AgNPs’lerin sudaki kararlılıkları ve boyutları Zetasizer ile incelenmiştir. Sentezlenen bütün J-AgNPs gruplarının zeta potansiyeli pozitif çıkmış ve zeta-boyutlarının 116,3-170 nm aralığında olduğu bulunmuştur. Fourier dönüşümlü kızılötesi spektroskopisi (FTIR) analizleri ile J-AgNPs’lerin kimyasal yapısı incelenmiş ve AgNPs’lerin çevresinde jelatin bulunduğu gösterilmiştir. Yapılan taramalı elektron mikroskobu (SEM) incelemeleri ile sentezlenen J-AgNPs’lerin morfolojilerinin küresel formda olduğu anlaşılmış ve SEM görüntüleri üzerinden yapılan enerji dağılım spektrometresi (EDS) analizleri ile J-AgNPs’lerin yapısında karbon, azot ve gümüş varlığı kanıtlanmıştır. Sentezlenen J-AgNPs’lerin kristal yapısı ve termal özellikleri sırasıyla X-Işını difraktometresi (XRD) ve termogravimetrik analiz (TGA) yöntemleri ile incelenmiştir. XRD analizi ile jelatinin amorf yapısı ve J-AgNPs’lerde metalik gümüş varlığı gösterilmiştir. TGA analiz sonuçlarına göre, J-AgNPs’lerin termal olarak saf jelatine göre daha kararlı olduğu ve 900 °C’nin sonunda arta kalan miktarının gümüş varlığı ile arttığı görülmüştür. İleri çalışmalarla, J-AgNPs’leirn antimikrobiyal ve sitotoksik etkileri incelenecek ve yara örtü materyallerinde antimikrobiyal ajan olarak kullanılma kapasitesine sahip J-AgNPs grupları belirlenecektir. KW - Jelatin KW - Gümüş nanopartikül KW - Yeşil sentez KW - Karakterizasyon KW - Antibakteriyel ajan N2 - In this study, gelatin protein was used both as a reducing agent and as a coating agent to synthesize gelatin coated silver nanoparticles (J-AgNPs) that can be used as an antimicrobial agent in dressing materials. For the synthesis of J-AgNPs, 1% gelatin solution and AgNO3 solution of certain concentration were mixed and the mixture was incubated at 100 °C for 2 hours. The yellow color-brown transformation observed in silver nitrate solutions added with gelatin solution indicates that the Ag (I) ion has been reduced to Ag (0). After this color change occurred, the mixture was continued to stir for 8 hours at room temperature. By measuring the absorbance spectra of J-AgNPs complexes between 300 and 600 nm with UV-Vis spectrophotometer, AgNPs formation were detected with the observation of surface plasmon peaks. Stability and dimensions of J-AgNPs in water were examined with Zetasizer. The zeta potential of all synthesized J-AgNPs groups were found to be positive and zeta-dimensions were found to be in the range 116.3-170 nm. The chemical structure of J-AgNPs was examined by fouirer transform infrared spectrophotometer (FTIR) analysis and it was shown that there was gelatin around AgNPs. It was understood that the morphologies of J-AgNPs synthesized by scanning electron microscopy (SEM) examinations were in spherical form, and the presence of carbon, nitrogen and silver in the structure of J-AgNPs was proved by energy dispersion spectrometry (EDS) analyzes made on SEM images. Crystal structure and thermal properties of synthesized J-AgNPs were examined by X-Ray diffractometer (XRD) and thermogravimetric analysis (TGA) methods, respectively. The amorphous structure of gelatin and the presence of metallic silver in J-AgNPs were shown by XRD analysis. According to the TGA analysis results, it was observed that J-AgNPs were thermally more stable than pure gelatin and the remaining amount at the end of 900 °C increased with the presence of silver. With further studies, the antimicrobial and cytotoxic effects of J-AgNPs will be examined and the J-AgNPs groups capable of being used as antimicrobial agents in wound dressing materials will be determined. CR - Akbulut, M., Reddy, N.K., Bechtloff, B., Koltzenburg, S., Vermant, J. and Prudhomme, R.K., 2008. Flow-induced conformational changes in gelatin structure and colloidal stabilization. Langmuir, 24, 9636-9641. https://doi.org/10.1021/la800487b CR - Anjum, S., Gupta, A., Sharma, D., Kumari, S., Sahariah, P., Bora, J., Bhan, S. and Gupta, B., 2017. Antimicrobial nature and healing behavior of plasma functionalized polyester sutures. Journal of Bioactive and Compatible Polymers, 32(3), 263-279. https://doi.org/10.1177/088391151666866 Aramwit, P., Bang, N., Ratanavaraporn, J. and Ekgasit, S., 2014. Green synthesis of silk sericin-capped silver nanoparticles and their potent anti-bacterial activity. Nanoscale Research Letters, 9, 79. https://doi.org/10.1186/1556-276X-9-79 CR - Bang, Y.J., Shankar, S. and Rhim, J.W., 2019. In situ synthesis of multi-functional gelatin/resorcinol/silver nanoparticles composite films. Food Packaging and Shelf Life, 22, 100399. https://doi.org/10.1016/j.fpsl.2019.100399 CR - Chaloupka, K., Malam, Y. and Seifalian, A.M., 2010. Nanosilver as a new generation of nanoproduct in biomedical applications. Trends in Biotechnology, 28, 580-588. https://doi.org/10.1016/j.tibtech.2010.07.006 CR - Chen, X. and Schluesener, H.J., 2008. Nanosilver: a nanoproduct in medical application. Toxicology Letter, 176, 1-12. https://doi.org/10.1016/j.toxlet.2007.10.004 CR - Darroudi, M., Ahmad, M.B., Abdullah, A.H. and Ibrahim, N.A., 2011. Green synthesis and characterization of gelatin-based and sugar-reduced silver nanoparticles. International Journal of Nanomedicine, 6, 569-574. https://doi.org/0.2147/IJN.S16867 CR - Dos Santos, C.A., Seckler, M.M., Ingle, A.P., Gupta, I., Galdiero, S., Galdiero, M., Gade, A., Rai, M., 2014. Silver nanoparticles: therapeutical uses, toxicity, and safety issues. Journal of Pharmaceutical Sciences, 103, 1931-1944. https://doi.org/10.1002/jps.24001 CR - Farhadi, S., Ajerloo, B. and Mohammadi, A., 2017. Green Biosynthesis of Spherical Silver Nanoparticles by Using Date Palm (Phoenix Dactylifera) Fruit Extract and Study of Their Antibacterial and Catalytic Activities. Acta Chimica Slovenica, 64, 129-143. https://doi.org/10.17344/acsi.2016.2956 CR - Goel, A., Meher, M.K., Gupta, P., Gulati, K., Pruthi, V. and Poluri, K.M., 2019. Microwave assisted κ-carrageenan capped silver nanocomposites for eradication of bacterial biofilms. Carbohydrate Polymers, 206, 854-862. https://doi.org/10.1016/j.carbpol.2018.11.033 CR - Gün Gök, Z., Günay, K., Arslan, M., Yiğitoğlu, M. and Vargel, İ., 2020. Coating of modified poly(ethylene terephthalate) fibers with sericin‑capped silver nanoparticles for antimicrobial application. Polymer Bulletin, 77, 1649-1665. https://doi.org/10.1007/s00289-019-02820-0 CR - Gün Gök, Z., Karayel, M. and Yiğitoğlu, M., 2021a. Synthesis of carrageenan coated silver nanoparticles by an easy green method and their characterization and antimicrobial activities. Research on Chemical Intermediates, https://doi.org/10.1007/s11164-021-04399-6 CR - Gün Gök, Z., Yiğitoğlu, M., Vargel, İ., Şahin, Y. and Alçığr, M.E., 2021b. Synthesis, characterization and wound healing ability of PET based nanofiber dressing material coated with silk sericin capped-silver nanoparticles. Materials Chemistry and Physics, 259, 124043. https://doi.org/10.1016/j.matchemphys.2020.124043 CR - Inyang, M., Gao, B., Wu, L., Yao, Y., Zhang, M. and Lin, L., 2013. Filtration of engineered nanoparticles in carbon-based fixed bed columns. Chemical Engineering Journal, 220, 221-227. https://doi.org/10.1016/j.cej.2013.01.054 CR - Jain, P. and Pradeep, T., 2005. Potential of silver nanoparticle-coated polyurethane foam as an antibacterial water filter. Biotechnology and Bioengineering, 90, 59-63. https://doi.org/10.1002/bit.20368 CR - Khanh, L.L., Truc, N.T., Dat, N.T., Nghi, N.T.P., Toi, V., Hoai, N.T.T., Quyen, T.N., Loan, T.T.T. and Hiep, N.T., 2019. Gelatin-stabilized composites of silver nanoparticles and curcumin: characterization, antibacterial and antioxidant study. Science and Technology of Advanced Materials, 20, 276-290. https://doi.org/10.1080/14686996.2019.1585131 CR - Kong, J. and Yu, S., 2007. Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Biochimica et Biophysica Sinica, 39, 549-59. https://doi.org/10.1111/j.1745-7270.2007.00320.x CR - Lavanya, K., Kalaimurugan, D., Shivakumar, M.S. and Venkatesan, S., 2020. Gelatin Stabilized Silver Nanoparticle Provides Higher Antimicrobial Efficiency as Against Chemically Synthesized Silver Nanoparticle. Journal of Cluster Science, 31, 265-275. https://doi.org/10.1007/s10876-019-01644-2 CR - Lee, H., Yeo, S. and Jeong, S., 2003. Antibacterial effect of nanosized silver colloidal solution on textile fabrics. Journal of Materials Science, 8, 2199-2204. https://doi.org/10.1023/A:1023736416361 CR - Luo, L.J., Lin, T.Y., Yao, C.H., Kuo, P.Y., Matsusaki, M., Harroun, S.G., Huang, C.C. and Lai, J.Y., 2019. Dual-functional gelatin-capped silver nanoparticles for antibacterial and antiangiogenic treatment of bacterial keratitis. Journal of Colloid and Interface Science, 536, 112-126. https://doi.org/10.1016/j.jcis.2018.10.041 CR - Mohan, S., Oluwafemi, S.O., George, S.C., Jayachandran, V.P., Lewu, F.B., Songca, S.P., Kalarikkal, N. and Thomas, S., 2014. Completely green synthesis of dextrose reduced silver nanoparticles, its antimicrobial and sensing properties. Carbohydrate Polymers, 106, 469-474. http://dx.doi.org/10.1016/j.carbpol.2014.01.008 CR - Naten, Z., Moloto, M.J., Mubiayi, P.K. and Sibiya, P.N., 2018. Green synthesis of chitosan capped silver nanoparticles and their antimicrobial activity. MRS Advances, 3(42-43), 1-13. https://doi.org/10.1557/adv.2018.368 CR - Nur Hanani, Z.A., Roos, Y.H. and Kerry, J.P., 2011. Fourier transform infrared (FTIR) spectroscopic analysis of biodegradable gelatin films immersed in water. International Congress on Engineering and Food, Proceedings. CR - Rai, M., Yadav, A. and Gade, A., 2009. Silver nanoparticles as a new generation of antimicrobials. Biotechnology Advances, 27, 76-83. https://doi.org/10.1016/j.biotechadv.2008.09.002 CR - Raveendran, P., Fu, J. and Wallen, S.L., 2003. Completely green synthesis and sta-bilization of metal nanoparticles. Journal of American Chemical Society, 125,13940-13941. https://doi.org/10.1021/ja029267j CR - Ravindra, S., Murali Mohan, Y., Narayana Reddy, N. and Mohana Raju, K., 2010. Fabrication of antibacterial cotton fibres loaded with silver nanoparticles via ‘‘Green Approach.’’ Colloids and Surfaces A: Physicochemical and Engineering Aspects, 367, 31-40. https://doi.org/10.1016/j.colsurfa.2010.06.013 CR - Rujitanaroj, P.O., Pimpha, N. and Supaphol, P., 2008. Wound-dressing materials with antibacterial activity from electrospun gelatin fiber mats containing silver nanoparticles. Polymer, 49, 4723-4732. https://doi.org/10.1016/j.polymer.2008.08.021 CR - Seong, M. and Lee, D.G. 2017. Silver Nanoparticles Against Salmonella enterica Serotype Typhimurium: Role of Inner Membrane Dysfunction. Current Microbiology, 74(6), 661-670. https://doi.org/10.1007/s00284-017-1235-9 CR - Sharma, V.K., Yngard, R.A. and Lin, Y., 2009. Silver nanoparticles: green synthesis and their antimicrobial activities. Advances in Colloid and Interface Science, 145, 83-96. https://doi.org/10.1016/j.cis.2008.09.002 CR - Shin, Y., Bae, I.T. and Exarhos, G.J., 2009. “Green” approach for self-assembly of platinum nanoparticles into nanowires in aqueous glucose solutions. Colloids Surface A, 348, 191-195. https://doi.org/10.1016/j.colsurfa.2009.07.013 CR - Sivera, M., Kvitek, L. Soukupova, J., Panacek, A., Prucek, R. Vecerova, R. and Zboril, R., 2014. Silver Nanoparticles Modified by Gelatin with Extraordinary pH Stability and Long-Term Antibacterial Activity. Plos One, 9, 103675. https://doi.org/10.1371/journal.pone.0103675 CR - Thakkar, K.N., Mhatre, S.S. and Parikh, R.Y., 2010, Biological synthesis of metallic nanoparticles. Nanomedicine, 6, 257-262. https://doi.org/10.1016/j.nano.2009.07.002 CR - Yue, X., Lin, H., Yan, T., Zhang, D., Lin, H. and Chen, Y., 2014. Synthesis of silver nanoparticles with sericin and functional finishing to cotton fabrics. Fibers and Polymers, 15, 716-722. https://doi.org/10.1007/s12221-014-0716-8 UR - https://doi.org/10.35414/akufemubid.889646 L1 - https://dergipark.org.tr/tr/download/article-file/1612374 ER -