TY - JOUR TT - Yapay Sinir Ağları İle Al/Sic Kompozit Malzemenin Yüzey Pürüzlülüğünün Tahmini AU - Şahin, İsmail PY - 2014 DA - March DO - 10.17341/gummfd.82690 JF - Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi JO - GUMMFD PB - Gazi Üniversitesi WT - DergiPark SN - 1300-1884 SP - 0 VL - 29 IS - 1 LA - en KW - Yüzey pürüzlülüğü KW - yapay sinir ağları KW - kompozit malzeme N2 - Bu çalışmada Al/SiC kompozit malzemenin yüzey pürüzlülüğü kesme parametrelerine bağlı olarak yapay sinirağları yaklaşımı kullanılarak yüksek doğrulukta tahmin edilmiştir. Al/SiC kompozit malzemenin TiCN+TiNkaplamalı cementide carbide kesici takımla işlenmesi sonucu deneysel olarak elde edilen yüzey pürüzlülüğüdeğerleri ileri beslemeli geriye yayılımlı 9 farklı YSA modelde eğitilmiştir. YSA modellerinin ağ yapılarındakinöron sayıları: 3-5-6-1, 3-6-4-1, 3-6-6-1, 3-4-3-5-1, 3-4-5-3-1, 3-6-2-3-1, 3-7-1, 3-8-1 ve 3-9-1'dir. YSA’nıneğitimi ve testi sonrası elde edilen değerler YSA modellerde yaygın olarak kullanılan istatistiksel analizlere tabitutularak incelenmiştir. Deneysel çalışmaların zorluğu, analitik ifadelerin karmaşıklığı bir çok çalışmada olduğugibi, YSA kullanımının avantajı kullanılarak kesme parametrelerine bağlı olarak yüzey pürüzlülüğünün tahminibu çalışmada da YSA’nın kullanılabilirliğini göstermiştir. CR - Karayel, D., “Prediction and control of surface CR - roughness in CNC lathe using artificial neural CR - network”, Journal of Materials Processing CR - Technology, 209, 7, 3125–3137, 2009. CR - Neşeli, S., Yaldız S. ve Turkes, E., “Optimization CR - of tool geometry parameters for turning CR - operations based on the response surface CR - methodology”, Measurement, 44, 3 580-587, CR - Davim, J.P., Gaitonde, V. N. ve Karnik, S. R., CR - “Investigation into the effect of cutting conditions CR - on surface roughness in turning of free machining CR - steel by ANN models”, Journal of Material CR - Processing Technology, 205, 16-23, 2008. CR - Nalbant, M., Gokkaya, H. ve Sur, G., CR - “Application of Taguchi method in the CR - optimization of cutting parameters for surface CR - roughness in turning”, Materials & Design, 28, CR - , 1379–1385, 2007. CR - Neşeli, S., Taşdemir Ş. ve Yaldız, S., “Prediction CR - of surface roughness on turning with Artificıal CR - Neural Network”, Journal of Engineering and CR - Architecture Faculty of Eskişehir Osmangazi CR - University, XXII, 3, 65-75, 2009. CR - Kohli, A., Dixit, U.S., “A neural-network-based CR - methodology for the prediction of surface CR - roughness in a turning process”, Int. J. Adv. CR - Manuf. Technol, 25, 118–129, 2005. CR - Bernardos, P.G., Vosniakos, G.C., “Predicting CR - surface roughness in machining: a review”, International Journal of Machine Tools & CR - Manufacture 43, 8, 833–844, 2003. CR - Petropoulos, G.P., Vaxevanidis, N. M., CR - Pandazaras, C.N. ve Antoniadis, A.A., CR - “Multiparameter identification and control of CR - turned surface textures”, Int. J. Adv. Manuf. CR - Technol., 29, 1-2, 118-128, 2006. CR - Oktem, H., Erzurumlu T., Erzincanlı F., CR - “Prediction of minumum surface roughness in CR - end milling mold part using neural network and CR - genetic algorithm” Materials and Design, 27, CR - -744, 2006. CR - Vishal S. S., Suresh D., Rakesh S. ve Sharma, S. CR - K., “Estimation of cutting forces and surface CR - roughness for hard turning using neural CR - Networks”, J. Intell Manuf,19, 473–483, 2008. CR - Sanjay , C., Jyothi, C. ve Chin, W., “A study of CR - surface roughness in drilling using mathematical CR - analysis and Neural Networks”, Int. Adv. Man. CR - Tec., 30, 9, 846-852, 2006. CR - Zain A.M., Haron. H. ve Sharif, S., “Prediction of CR - surface roughness in the end milling machining CR - using artificial neural network”, Robotics and CR - computer integrated manufacturing, 19, 189- CR - , 2006. CR - Taşdemir, Ş., Neşeli S., Sarıtaş İ. ve Yaldız S., CR - “Prediction of surface roughness using artificial CR - neural network in Lathe”, CompSysTech’08, CR - Gabrovo, Bulgaria, 2008. CR - Nalbant, M., Gökkaya, H., Toktaş, İ., Sur, G., CR - “The experimental investigation of the effects of CR - uncoated, PVD- and CVD-coated cemented CR - carbide inserts and cutting parameters on surface CR - roughness in CNC turning and its prediction CR - using artificial neural networks”, Robotics and CR - Computer-Integrated Manufacturing, 25, 1, CR - –223, 2009. CR - Abeesh, B. C., Dabade, U. A., Joshi, S. S., CR - Bhanuprasad, V. V., & Gadre, V. M. “Modeling CR - of surface roughness in precision machining of CR - metal matrix composites using ANN”, Journal CR - of Material Processing Technology, 197, 439– CR - , 2008. CR - Asiltürk İ., Cunkaş, M., “Modelling and CR - Prediction of surface roughness in turning CR - operations using artificial neural network and CR - multiple regression method”, Expert system CR - with Application, 38, 5826-5832, 2011. CR - Feng C-X, Wang X-F, “Surface roughness CR - prediction modelling: neural networks versus CR - regression”, IIE Trans., 35, 1, 11–27, 2003. CR - Turgut, Y., Çinici, H., Şahin, İ. ve Fındık, T., CR - “Study of cutting force and surface roughness in CR - milling of Al/Sic metal matrix composites”, CR - Scientific Research and Essays, 6, 10, 2056- CR - , 2011. CR - Ozdemir, V., “ Determination of Turkey's CR - carbonizatıon index based on basic energy CR - indicators by Artifıcial Neural Networks, CR - Journal of The Faculty of Engineering and CR - Architecture of Gazi University, 26, 1, 9-15, CR - Eker, A. M., Dikmen, M., Cambazoğlu, S., CR - Düzgün, Ş.H.S.B., "Application of artificial CR - neural network and logistic regression methods to CR - landslide susceptibility mapping and comparison CR - of the results for the Ulus district, Bartın", CR - Journal of The Faculty of Engineering and CR - Architecture of Gazi University, 27, 1, 163- CR - , 2012 CR - Kalogirou, S. A., “Artificial intelligence for the CR - modeling and control”, Progress in Energy and CR - Combustion Science, 29, 515–566, 2003. CR - Fındık, T., Taşdemir, Ş. ve Şahin, İ., “The use of CR - artificial neural network for prediction of grain CR - size of 17-4 pH stainless steel powders”, CR - Scientific Research and Essays, 5 , 11, 1274- CR - , 2010. CR - Aşkın, D., İskender, İ. ve Mamizadeh, A., "Dry CR - type transformer winding thermal analysis using CR - different neural network methods", Journal of CR - The Faculty of Engineering and Architecture CR - of Gazi University, 26, 4, 905-913, 2011. CR - Karataş, Ç., Sozen, A. ve Dulek, E., “Modelling CR - of residual stresses in the shot peened material C- CR - by artificial neural network”, Expert CR - Systems with Applications, 36, 2, 3514–3521, CR - Menlik, T., Özdemir, M.B. vr Kirmaci, V., CR - “Determination of freze – drying behaviors of CR - apples by artificial neural network”, Expert CR - system with application, 37, 7669-7677, 2010. CR - Sozen, A., Future projection of the energy CR - dependency of Turkey using artificial neural CR - network, Energy Policy, 37, 4827-4833, 2009. CR - Sözen, A., Arcaklıoğlu, E., Menlik, T., Özalp, CR - M., “Determination of thermodynamic properties CR - of an alternative refrigerant (R407c) using CR - artificial neural network”, Expert Systems with CR - Applications, 36, 3, 4346–4356, 2009. CR - Lewis,. C.D., Industrial and Business CR - Forecasting Methods., Butterworths Publishing, CR - London, 1982. UR - https://doi.org/10.17341/gummfd.82690 L1 - https://dergipark.org.tr/tr/download/article-file/76375 ER -