TY - JOUR T1 - EĞİLME VE BURULMAYA MARUZ ELASTİK ROBOT KOLUNUN DİNAMİK MODELİ TT - DYNAMIC MODELING OF ELASTIC ROBOT ARM IN BENDING AND TORSION AU - Akbaba, Levent AU - Yüksel, Şefaatdin PY - 2013 DA - March JF - Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi JO - GUMMFD PB - Gazi Üniversitesi WT - DergiPark SN - 1300-1884 SP - 349 EP - 357 VL - 21 IS - 2 LA - tr AB - Bu çalışmada, uzaydaki sabit bir eksen takımına göre hareketi önceden belirlenmiş bir mafsal içinde hareketeden elastik çubuk ele alınmıştır. Elastik çubuğun iki eksene göre eğilmeye ve kendi ekseni etrafında burulmayamaruz kaldığı ve çubuğun ucunda bir disk olduğu kabul edilmiştir. Kayar mafsalın sabit bir eksen takımına görekinematiği üç boyutlu olarak verilmektedir. Elastik çubuğun kayar mafsal içindeki hareketini kayar mafsaldanuygulanan tahrik kuvveti temin etmektedir. Bu kabuller altında elastik çubuğun hareket denklemleri HamiltonPrensibi ile elde edilmiştir. Ayrıca, Kabul Edilmiş Modlar yöntemi kullanılarak sistemin hareket denklemleri adidiferansiyel denklem takımları şeklinde elde edilmiştir. Bu denklem takımları çözülerek elde edilen titreşimbiçimleri grafikler şeklinde sunulmuştur. KW - Elastik çubuk KW - prizmatik mafsal KW - eğilme titreşimleri KW - burulma titreşimleri N2 - In this study, an elastic beam sliding through a prismatic joint having an arbitrarily given motion in a fixedcoordinate system is investigated. It is assumed that elastic beam undergoing flexural in two planes and torsionalelastic displacements, and elastic beam having a disk at one-end. Kinematics of prismatic joint is given as a 3Dspace motion in a fixed coordinate system. The prismatic joint is subjected to a propelling force from prismaticjoint. With these assumptions, the differential equations of motion of the elastic beam are derived by usingHamilton’s Principle. Besides, the equations of motions of the system are derived as ordinary differentialequations by using the Assumed Modes Method. These equations are solved and some sample mode shapes ofthe vibrations are presented as graphics. CR - Taborrok, B., Scott, C.M. and Kim, Y.L., “On the CR - Dynamics of an Axially Moving Beam”, Journal CR - of Franklin Institute, Cilt 297, 201-220, 1974. CR - Bergamaschi, S. and Sinopoli, A., “On the CR - Flexural Vibrations of Arms with Variable CR - Length: An Exact Solution”, Mechanical Research CR - Communications, Cilt 10, 341-345, 1983. CR - Wang, P.K.C and J. D. Wei, J.D., “Vibrations in CR - a Moving Flexible Robot Arm”, Journal of CR - Sound and Vibration, Cilt 114, 149-160, 1987. CR - Todikonda, S.S.K. and Baruh, H., “Dynamics and CR - Control of a Translating Flexible Beam with a CR - Prismatic Joint”, Journal of Dynamic Systems, CR - Measurements and Control, Cilt 114, 422-427, CR - Stylianou, M. and Tabarrok, B., “Finite Element CR - Analysis of an Axially Moving Beam, Part I: CR - Time Integration”, Journal of Sound and CR - Vibration, Cilt 178, No 4, 433-453, 1993. CR - Theodore, R.J., Arakeri, J.H. and Ghosal, A., CR - “The Modelling of Axially Translating Flexible CR - Beams”, Journal of Sound and Vibration, Cilt CR - , No 3, 363-376, 1996. CR - Al-Bedoor, B.O. and Khulief, Y.A., “An Approximate CR - Analytical Solution of Beam Vibrations CR - during Axial Motion”, Journal of Sound and CR - Vibration, Cilt 192, No 1, 159-171, 1996. CR - Ankaralı, A. and Diken, H., “Vibration Control of CR - an Elastic Manipulator Link”, Journal of Sound CR - and Vibration, Cilt 204, No 1, 162-170, 1997. CR - Buffinton, K.W. and Kane, T.R., “Dynamics of a CR - Beam over Supports” International Journal of CR - Solids Structure, Cilt 21, 617-643, 1985. CR - Lee, H.P., “Dynamics of an Axially Extending CR - and Rotating Cantilever Beam Including the CR - Effect of Gravity”, International Journal of CR - Solids Structures, Cilt 32, 1595-1606, 1995. CR - Tadikonda, S.S.K., Singh, R.P. and Stornelli, S., CR - “Multibody Dynamics Incorporating Deployment CR - of Flexible Structures”, Journal of Vibration CR - and Acoustics, Cilt 118, 237-241, 1996. CR - Yuh, J. and Young, T., “Dynamic Modelling of an CR - Axially Moving Beam in Rotation: Simulation and CR - Experiment”, Journal of Dynamic Systems CR - Measurements and Control, Cilt 113, 34-40, 1991. CR - Banerjee, A.K. and Kane, T.R., “Extrusion of a CR - Beam From Rotating Base”, Journal of Guidance, CR - Cilt 12,140-146, 1989. CR - Chalhoub, N.G. and Ulsoy, A.G., “Dynamic Simulation CR - of a Leadscrew Driven Flexible Robot Arm and CR - Controller”, Journal of Dynamic Systems Measurements CR - and Control, Cilt 108, 119-126, 1986. CR - Al-Bedoor, B.O. and Khulief, Y.A., “Vibrational CR - Motion of an Elastic Beam with Prismatic and CR - Revolute Joints”, Journal of Sound and CR - Vibration, Cilt 190, No 2, 195-206, 1996. CR - Al-Bedoor, B.O. and Khulief, Y.A., “General CR - Planar Dynamics of a Sliding Flexible Link”, CR - Journal of Sound and Vibration, Cilt 206, No 5, CR - -661, 1997. CR - Gaulter, P.E. and Cleghorn, W.L., “A Spatially CR - Translating and Rotating Beam Finite Element CR - for Modelling Flexible Manipulators”, Mechanism CR - and Machine Theory, Cilt 27, 415-433, 1992. CR - Al-Bedoor, B.O. and Almussallam, A.A., CR - “Dynamics of Flexible-Link and Flexible-Joint CR - Manipulator Carrying a Payload with Rotary CR - Inertia”, Mechanism and Machine Theory, Cilt CR - , 785-820, 2000. CR - Gürgöze, M. and Müller, P.C., “Modelling and CR - Control of Elastic Robot Arm with Prismatic Joint”, CR - Dynamics of Controlled Mec. Sys., IUTAM/ CR - IFAC, 235-245, 1989. CR - Hashemi, S.M., Richard, M.J., “Free Vibrational CR - Analysis of Axially Loaded Bending-Torsion CR - Coupled Beams: A Dynamic Finite Element”, CR - Computers & Structures, Cilt 77, 711-724 2000. CR - Banerjee, J.R., “Explicit Frequency Equation and CR - Mode Shapes of Cantilever Beam Coupled in CR - Bending and Torsion”, Journal of Sound and CR - Vibration, Cilt 224, No 2, 267-281, 1999. CR - Tanaka, M., Berin, A.N. & Suzuki, R., CR - “Application of the Boundary Integral Equation CR - Method the Coupled Bending-Torsional Vibrations CR - of Elastic Beams” Engineering Analysis with CR - Boundary Elements, Cilt 20, 73-79, 1997. CR - Adam, C., “Forced Vibrations of Elastic Bending- CR - Torsion Coupled Beams”, Journal of Sound and CR - Vibration, Cilt 221, No 2, 273-287, 1999. CR - Yüksel, Ş. and Gürgöze, M., “On the Flexural CR - Vibrations of Elastic Manipulators with Prismatic CR - Joints”, Computers & Structures, Cilt 62, No 5, CR - -908, 1997. CR - Gürgöze, M. and Yüksel, Ş., “Transverse CR - Vibrations of Flexible Beam Sliding through a CR - Prismatic Joint”, Journal of Sound and CR - Vibrations, Cilt 223, No 3, 467-482, 1999. CR - Yüksel, Ş., “Prizmatik Mafsal İçinden Kayan CR - Elastik Çubuğun Dinamiği”, Gazi Üniversitesi CR - Mühendislik Mimarlık Fakültesi Dergisi, Cilt CR - , No 2, 43-55, 1999. CR - Akbaba, L., Prizmatik Mafsal İçinden Kayan CR - Elastik Çubuklarda Eğilme ve Burulma CR - Titreşimlerinin İncelenmesi, Yüksek Lisans Tezi, CR - Gazi Üniversitesi, Fen Bilimleri Enstitüsü, 2004. CR - Meirovitch, L., Elements of Analytical Dynamics, CR - Elements of Vibration Analysis, 2nd ed., Mc CR - Graw Hill, NewYork, 245-263, 1986. CR - Meirovitch, L., Continuous System, Approximate CR - Methods, Elements of Vibration Analysis, CR - nd ed., Mc Graw Hill, NewYork, 266-298, 1986. CR - Shigley, J.E., Uicker, JR. J.J., Static Forces, CR - Theory of Machines and Mechanisms, 2nd ed, CR - Mc Graw Hill, NewYork, 405-413, 1995. CR - Beer,F.P., Johnston, E.R., Rijit Cisimlerin Kinematiği, CR - Mühendisler İçin Mekanik: Dinamik, CR - Cilt II, Tameroğlu, S.S., Özbek, T., Birsen CR - Yayınevi, İstanbul, 182-234 1991. UR - https://dergipark.org.tr/tr/pub/gazimmfd/issue//89370 L1 - https://dergipark.org.tr/tr/download/article-file/76449 ER -