TY - JOUR T1 - Türk Marketlerinde Satışa Sunulan Çeşitli Balık Ürünlerinin Biyojenik Amin ve Trimetilamin İçerikleri TT - Trimethylamine and Biogenic Amine Levels of Various Fish Products Sold in Turkish Markets AU - Özyurt, Gülsün AU - Özkütük, Ali Serhat AU - Boğa, Esmeray Küley PY - 2022 DA - March DO - 10.22392/actaquatr.906996 JF - Acta Aquatica Turcica JO - Acta Aquat. Turc. PB - Isparta Uygulamalı Bilimler Üniversitesi WT - DergiPark SN - 2651-5474 SP - 13 EP - 23 VL - 18 IS - 1 LA - tr AB - Çalışmada Türk marketlerinde ticari olarak satılan 17 farklı işlenmiş balık ürününün (dondurulmuş Alaska mezgiti, hamsi filetosu, sardalya filetosu, berlam filetosu, Asya kedi balığı filetosu, palamut, Atlantik somon; tütsülenmiş kurutulmuş uskumru, alabalık, Atlantik somon; marine edilmiş uskumru, hamsi, kırmızı biber soslu hamsi ve acı biber soslu hamsi; tütsülenmiş-marine edilmiş uskumru, hamsi) biyojenik amin içeriği hızlı HPLC metodu kullanılarak analiz edilmiştir. Balık ürünlerinde en fazla miktarda bulunan biyojenik aminler putresin, spermidin, spermin ve dopamin olmuştur. Test edilen balık ürünleri arasında histamin birikimi sadece dondurulmuş Atlantik somon, marine kurutulmuş uskumru ve marine acı biber soslu hamside gözlenmiş olup, 10 mg/100 g olarak belirtilen yasal limitin altında kalmıştır. Balık ürünlerinde tiramin histamine kıyasla daha yüksek oranda birikime uğramıştır. En yüksek tiramin içeren balık ürünleri, 8,5 mg/100 g, 5,27 mg/100 g ve 3,5 mg/100 g değer ile dondurulmuş Atlantik somon, acı biber soslu marine hamsi ve tütsülenmiş-marine uskumru olmuştur. Putresin ve kadeverin birikimi tüm balık ürünlerinde sırasıyla < 33,53 ve < 19,87 mg/100 g olarak bulunmuştur. Balık ürünlerinin trimetilamin (TMA) içeriği ise 6,6-22 mg/100 g arasında olmuştur. Balık örneklerinde toplam biyojenik amin değeri en düşük dondurulmuş Alaska mezgitinde gözlenirken (28,8 mg/100 g), dondurulmuş Atlantik somon en yüksek biyojenik amin içeren (232,3 mg/100 g) balık ürünü olmuştur. Çalışma sonucunda, test edilen çoğu işlenmiş balık ürününün iyi kalitede olduğu gözlenmiştir. Ancak bu sonuçlar işlenmiş su ürünlerinde insan tüketiminde güvenliği sağlamak için dikkatle izleme çalışmalarının yapılması gerektiğini ortaya koymuştur. KW - İşlenmiş balık ürünleri KW - biyojenik aminler KW - TMA KW - histamin KW - Putresin N2 - In this study, biogenic amine contents of 17 different fish products (frozen Alaska Pollock, anchovy fillets, sardine fillets, hake fillets, pangasius fillets, Atlantic bonito, and Atlantic salmon; smoked mackerel, trout, Atlantic salmon; marinated mackerel, anchovy, anchovy with red pepper sauce, anchovy with hot pepper sauce; smoked–marinated mackerel and anchovy) available on Turkish retail market were investigated using rapid HPLC method. Putrescine, spermidine, spermine, and dopamine were the most abundant biogenic amines found in fish products. Among fish products tested, histamine accumulation was only found for frozen Atlantic salmon, marinated dried mackerel, and marinated anchovy with hot pepper sauce, and remained below the legal limit suggested as 10 mg/100 g. Tyramine accumulation in fish products was higher than histamine. The highest tyramine content was observed from frozen Atlantic salmon, marinated anchovy with hot pepper sauce, and smoked-marinated mackerel, with a corresponding value of 8.5, 5.27, and 3.5 mg/100 g. Putrescine and cadaverine level of fish products were found as <33.53 and <19.87 mg/100g, respectively. Trimethylamine (TMA) contents of fish products were between 6.6 and 22 mg/100 g. The lowest total biogenic amine content was detected in frozen Alaska pollock (28.8 mg/100 g), whilst frozen Atlantic salmon had the highest level of total biogenic amine (232.3 mg/100 g). The study results showed that most of the fish products tested were of good quality. However, these results revealed that careful monitoring studies should be made to ensure the safety of fishery products in human consumption. CR - Bermúdez, R., Lorenzo, J. M., Fonseca, S., Franco, I., & Carballo, J. (2012). Strains of Staphylococcus and Bacillus isolated from traditional sausages as producers of biogenic amines. Frontiers in Microbiology, 3, 151. https://doi.org/10.3389/fmicb.2012.00151 CR - Biji, K.B., Ravishankar, C.N., Venkateswarlu, R., Mohan, C.O., & Gopal, T.K.S. (2016). Biogenic amines in seafood. Journal of Food Science and Technology, 53(5), 2210–2218. https://doi.org/10.1007/s13197-016-2224-x CR - Bover-Cid, S., Latorre-Moratalla, M.L., Veciana-Nogués, M.T., & Vidal-Carou, M.C. (2014) Processing contaminants: Encyclopedia of Food Safety: Elsevier Inc., Burlington, MA, USA. CR - Bover-Cid, S B., Miguélez-Arrizado, M.J., Becker, B., Holzapfel, W. H., & Vidal-Carou, M.C. (2008). Amino acid decarboxylation by Lactobacillus curvatus CTC273 affected by the pH and glucose availability. Food Microbiology, 25(2), 269-277. https://doi.org/10.1016/j.fm.2007.10.013 CR - Bulushi, I. A., Poole, S., Deeth, H. C., & Dykes, G. A. (2009). Biogenic amines in fish: roles in intoxication, spoilage, and nitrosamine formation. Critical Reviews in Food Science and Nutrition, 49(4), 369-377. https://doi.org/10.1080/10408390802067514 CR - Buňková, L., Buňka, F., Klčovská, P., Mrkvička, V., Doležalová, M., & Kráčmar, S. (2010). Formation of biogenic amines by Gram-negative bacteria isolated from poultry skin. Food Chemistry, 121(1), 203-206. https://doi.org/10.1016/j.foodchem.2009.12.012 CR - Connell, J.J. (1990). Methods of Assessing and Selecting for Quality. Control of Fish Quality. 3rd ed. Oxford: Fishing News Books. pp. 122–150 CR - Du, W.X., Lin, C.M., Phu, A.T., Cornell, J.A., Marshall, M.R. & Wei, C.I. (2002). Development of biogenic amines in yellow fin tuna (Thunnus albacares): Effect of storage and correlation with decarboxylase-positive bacterial flora. Journal of Food Science, 67, 292–301. https://doi.org/10.1111/j.1365-2621.2002.tb11400.x CR - Durak-Dados, A., Michalski, M., & Osek, J. (2020). Histamine and other biogenic amines in food. Journal of Veterinary Research, 64(2), 281-288. https://dx.doi.org/10.2478%2Fjvetres-2020-0029 CR - Espalha, C., Fernandes, J., Diniz, M., & Vassilenko, V. (2019). Fast and direct detection of biogenic amines in fish by GC-IMS technology. In 2019 IEEE 6th Portuguese Meeting on Bioengineering (ENBENG) (pp. 1-4). IEEE. https://doi.org/10.1109/ENBENG.2019.8692532 CR - Food and Drug Administration (FDA). (2001). Fish and fisheries products hazards and controls guidance, 3rd edn. US FDA Center for Food Safety and Applied Nutrition, Maryland. CR - Gardini, F., Özogul, Y., Suzzi, G., Tabanelli, G., & Özogul, F. (2016). Technological factors affecting biogenic amine content in foods. Frontiers in Microbiology, 7, 1218. https://doi.org/10.3389/fmicb.2016.01218 CR - Griswold, A. R., Jameson-Lee, M., & Burne, R. A. (2006). Regulation and physiologic significance of the agmatine deiminase system of Streptococcus mutans UA159. Journal of Bacteriology, 188(3), 834-841. https://doi.org/10.1128/JB.188.3.834-841.2006 CR - Houicher, A., Kuley, E., Bendeddouche, B., & Ozogul, F. (2013). Effect of Mentha spicata L. and Artemisia campestris extracts on the shelf life and quality of vacuum-packed refrigerated sardine (Sardina pilchardus) fillets. Journal of Food Protection, 76(10), 1719-1725. https://doi.org/10.4315/0362-028X.JFP-13-118 CR - Huang, Y. R., Liu, K. J., Hsieh, H. S., Hsieh, C. H., Hwang, D. F., & Tsai, Y. H. (2010). Histamine level and histamine-forming bacteria in dried fish products sold in Penghu Island of Taiwan. Food Control, 21(9), 1234-1239. https://doi.org/10.1016/j.foodcont.2010.02.008 CR - Huss, H.H. (Ed.). (1995). Quality and quality changes in fresh fish (Vol. 348). Rome: FAO. CR - Kang, Y.M., Kim, M.J., Park, S.Y., Heu, M.S., & Kim, J.S. (2019). Survey and exposure assessment of biogenic amines in fish species commonly consumed in Korea. Journal of Food Protection, 82(1), 151-158. https://doi.org/10.4315/0362-028X.JFP-18-258 CR - Kuley, E., Yavuzer, M.N., Yavuzer, E., Durmuş, M., Yazgan, H., Gezginç, Y., & Özogul, F. (2019). Inhibitory effects of safflower and bitter melon extracts on biogenic amine formation by fish spoilage bacteria and food borne pathogens. Food Bioscience, 32, 1-8. https://doi.org/10.1016/j.fbio.2019.100478 CR - Ladero, V., Fernández, M., Cuesta, I., & Alvarez, M.A. (2010). Quantitative detection and identification of tyramine-producing enterococci and lactobacilli in cheese by multiplex qPCR. Food Microbiology, 27(7), 933-939. https://doi.org/10.1016/j.fm.2010.05.026 CR - Lakshmanan, R., Shakila, R.J., & Jeyasekaran, G. (2002). Survival of amine-forming bacteria during the ice storage of fish and shrimp. Food Microbiology, 19(6), 617-625. https://doi.org/10.1006/fmic.2002.0481 CR - Lange, J. & Wittmann, C. (2002). Enzyme sensor array for the determination of biogenic amines in food samples. Analytical and Bioanalytical Chemistry, 372, 276-283. https://doi.org/10.1007/s00216-001-1130-9 CR - Muñoz-Esparza, N.C., Latorre-Moratalla, M.L., Comas-Basté, O., Toro-Funes, N., Veciana-Nogués, M. T., & Vidal-Carou, M.C. (2019). Polyamines in food. Frontiers in Nutrition, 6, 108. https://doi.org/10.3389/fnut.2019.00108 CR - Özogul, F., Taylor, K. D. A., Quantick, P., & Özogul, Y. (2002). Biogenic amines formation in Atlantic herring (Clupea harengus) stored under modified atmosphere packaging using a rapid HPLC method. International Journal of Food Science & Technology, 37(5), 515-522. https://doi.org/10.1046/j.1365-2621.2002.00608.x CR - Özogul, Y., & Özogul, F. (2019). Biogenic amines formation, toxicity, regulations in food. In: Biogenic Amines in Food: Analysis, Occurrence and Toxicity Edited by Bahruddin Saad and Rosanna Tofalo, p. 1-17. https://doi.org/10.1039/9781788015813-00001 CR - Pons-Sánchez-Cascado, S., Veciana- Nogués, M.T., Bover-Cid, S., Mariné-Font, A., & Vidal-Carou, M. C. (2005a). Volatile and biogenic amines, microbiological counts, and bacterial amino acid decarboxylase activity throughout the salt-ripening process of anchovies (Engraulis encrasicholus). Journal of Food Protection, 68, 1683–1689. https://doi.org/10.4315/0362-028X-68.8.1683 CR - Pons-Sánchez-Cascado, S., Vidal Carou, M.C., Mariné-Font, A., & Veciana-Nogués, M.T. (2005b). Influence of the freshness grade of raw fish on the formation of volatile and biogenic amines during the manufacture and storage of vinegar-marinated anchovies. Journal of Agriculture and Food Chemistry. 53, 8586–8592. https://doi.org/10.1021/jf050867m CR - Rezaei, M., Montazeri, N., Langrudi, H. E., Mokhayer, B., Parviz, M., & Nazarinia, A. (2007). The biogenic amines and bacterial changes of farmed rainbow trout (Oncorhynchus mykiss) stored in ice. Food Chemistry, 103(1), 150-154. https://doi.org/10.1016/j.foodchem.2006.05.066 CR - Rodtong, S., Nawong, S. and Yongsawatdigul, J., (2005). Histamine accumulation and histamine-forming bacteria in Indian anchovy (Stolephorus indicus). Food Microbiology, 22, 475–482. https://doi.org/10.1016/j.fm.2004.08.009 CR - Rossano, R., Mastrangelo, L., Ungaro, N. & Riccio, P. (2006). Influence of storage temperature and freezing time on histamine level in the European anchovy Engraulis encrasicholus (L., 1758): a study by capillary electrophoresis. Journal Chromatography Bulletin, 830, 161–164. https://doi.org/10.1016/j.jchromb.2005.10.026 CR - Sedaghati, M., & Mooraki, N. (2019). Biogenic amines in sea products. Journal of Survey in Fisheries Sciences, 6(1), 1-8. CR - Santos, M. H. S. (1996). Biogenic amines: Their importance in foods. International Journal of Food Microbiology, 29(2-3), 213-231. https://doi.org/10.1016/0168-1605(95)00032-1 CR - Suzzi, G., & Gardini, F. (2003). Biogenic amines in dry fermented sausages. International Journal of Food Microbiology, 88(1), 41-54. https://doi.org/10.1016/S0168-1605(03)00080-1 CR - Takahashi, H., Kimura, B., Yoshikawa, M., & Fujii, T. (2003). Cloning and sequencing of the histidine decarboxylase genes of Gram-negative, histamine-producing bacteria and their application in detection and identification of these organisms in fish. Applied and Environmental Microbiology, 69(5), 2568-2579. https://doi.org/10.1128/AEM.69.5.2568-2579.2003 CR - Taylor, S.L. (1986) Histamine food poisoning: Toxicology and clinical aspects. Critical Review of Toxicology, 17, 91-128. https://doi.org/10.3109/10408448609023767 CR - Ten Brink, B., Damirik, C., Joosten, H.M.L.J., & HuisIn’t Veld, H.J. (1990). Occurrence and formation of biologically active amines in foods. International Journal of Food Microbiology, 11(1), 73-84. https://doi.org/10.1016/0168-1605(90)90040-C CR - Visciano, P., Schirone, M., Tofalo, R., & Suzzi, G. (2012). Biogenic amines in raw and processed seafood. Frontiers in Microbiology, 3, 188. https://doi.org/10.3389/fmicb.2012.00188 CR - Weremfo, A., Eduafo, M. K., Gyimah, H. A., & Abassah-Oppong, S. (2020). Monitoring the levels of biogenic amines in canned fish products marketed in Ghana. Journal of Food Quality, 2020, 1-6. https://doi.org/10.1155/2020/2684235 CR - Zarei, M., Najafzadeh, H., Enayati, A., & Pashmforoush, M. (2011). Biogenic amines content of canned tuna fish marketed in Iran. American-Eurasian Journal of Toxicological Sciences, 3(3), 190-193. UR - https://doi.org/10.22392/actaquatr.906996 L1 - https://dergipark.org.tr/tr/download/article-file/1674609 ER -