TY - JOUR T1 - Forecasting of Turkish Sovereign Sukuk Prices Using Artificial Neural Network Model TT - Türkiye’de Hazine Sukuk Fiyatlarının Yapay Sinir Ağı Modeli ile Tahmini AU - Çetin, Dilşad Tülgen AU - Metlek, Sedat PY - 2021 DA - December JF - Acta Infologica JO - ACIN PB - İstanbul Üniversitesi WT - DergiPark SN - 2602-3563 SP - 241 EP - 254 VL - 5 IS - 2 LA - en AB - Recently, artificial neural networks have been successfully applied in many areas such as forecasting financial time series, predicting financial failure, and classification of ratings. However, it has hardly been applied in forecasting sukuk prices, which is considered the most common Islamic capital market instrument. Since sukuk is a new financial asset, there are not enough studies in this area. Therefore, this study aims to forecast the Turkish sovereign sukuk prices using with artificial neural network model and to reveal the determinants in the forecasting of sukuk prices. For this purpose, a multi-layer feed forward artificial neural network model is designed using dollar-based international sovereign sukuk price data issued by the Turkish Ministry of Treasury and Finance. The dollar index, volatility index, geopolitical risk index, Standard and Poor’s Middle East and North Africa sukuk index, and Eurobond prices constituted as input variables of the designed model and the sovereign sukuk prices formed the output. As a result, the sovereign sukuk prices were forecasted accurately at the success rate of 99.98%. The accurate forecasting of sukuk prices will play a critical role in reducing the risk perception of sukuk investors and increasing their profitability. The findings of the study are important in terms of proving that the artificial neural network model is an effective model for forecasting the sukuk prices and revealing that the dollar index, volatility index, geopolitical risk index, Standard and Poor’s MENA sukuk index, and Eurobond prices are determinants in forecasting sukuk prices. KW - Sukuk KW - Price Forecasting KW - Artificial Neural Network KW - Geopolitical Risk KW - Dollar Index KW - Volatility Index N2 - Son yıllarda yapay sinir ağları, finansal zaman serilerinin tahmini, finansal başarısızlığın öngörülmesi ve derecelendirme notlarının sınıflandırılması gibi birçok alanda başarıyla uygulanmaktadır. Bununla birlikte, İslami sermaye piyasalarının en yaygın ürünü olarak nitelendirilen sukuk fiyatlarının tahmininde hemen hemen hiç uygulanmamıştır. Sukuk yeni bir finansal varlık olduğu için bu alanda yeterli çalışma bulunmamaktadır.. Bu nedenle çalışmada, Türkiye’deki hazine sukuk fiyatlarının yapay sinir ağı modeli ile tahmin edilmesi ve sukuk fiyatlarının tahminindeki belirleyicilerin ortaya konulması amaçlanmaktadır. Bu amaç doğrultusunda, Türkiye Hazine ve Maliye Bakanlığı tarafından ihraç edilen dolar bazlı uluslararası hazine sukuk fiyat verileri kullanılarak çok katmanlı geri beslemeli yapay sinir ağı modeli oluşturulmuştur. Dolar endeksi, volatilite endeksi, jeopolitik risk endeksi, Standard and Poor’s MENA sukuk endeksi ve Eurobond fiyatları geliştirilen modelin giriş değişkenlerini, hazine sukuk fiyatı ise modelin çıkışını oluşturmuştur. Sonuç olarak, hazine sukuk kapanış fiyatları tasarlanan model ile %99,98 başarı oranıyla doğru tahmin edilmiştir. Sukuk fiyatlarının yüksek başarıyla tahmini, sukuk yatırımcılarının risk algılamasının azaltılmasını ve kârlılığının artırılmasını sağlamada etkin bir rol oynayacaktır. Çalışmanın bulguları, yapay sinir ağı modelinin sukuk fiyatlarını tahmin etmede etkin bir model olduğunu kanıtlaması ve dolar endeksi, volatilite endeksi, jeopolitik risk endeksi, Standard and Poor’s MENA sukuk endeksi ve Eurobond fiyatlarının, sukuk fiyatlarını tahmin etmede belirleyici olduğunu ortaya koyması bakımından önem taşımaktadır. CR - AAOIFI. (2015). Sharia’a Standards (No:17 Investment Sukuk). Manama, Bahrain: Accounting and Auditing Organization for Islamic Financial Institutions. CR - Alam, N., Hassan, M. K., & Haque, M. A. (2013). Are Islamic bonds different from conventional bonds? International evidence from capital market tests. Borsa Istanbul Review, 13, 22–29. https://doi.org/10.1016/j.bir.2013.10.006 CR - Ariff, M., Chazi, A., Safari, M., & Zarei, A. (2017). Significant difference in the yields of sukuk bonds versus conventional bonds. Journal of Emerging Market Finance, 16(2), 115–135. https://doi.org/10.1177/0972652717712352 CR - Arundina, T., Azmi Omar, M., & Kartiwi, M. (2015). The predictive accuracy of sukuk ratings; multinomial logistic and neural network ınferences. Pacific Basin Finance Journal, 34(34), 273–292. https://doi.org/10.1016/j.pacfin.2015.03.002 CR - Arundina, T., Kartiwi, M., & Omar, M. A. (2016). Artificial intelligence for Islamic sukuk rating predictions. In Artificial Intelligence in Financial Markets (pp. 211–241). Palgrave Macmillan UK. https://doi.org/10.1057/978-1-137-48880-0_8 CR - Aslam, F., Mughal, K. S., Ali, A., & Mohmand, Y. T. (2020). Forecasting Islamic securities index using artificial neural networks: performance evaluation of technical indicators. Journal of Economic and Administrative Sciences, ahead-of-p(ahead-of-print). https://doi.org/10.1108/jeas-04-2020-0038 CR - Caldara, D., & Iacoviello, M. (2018). Measuring geopolitical risk. International Finance Discussion Paper, 2018(1222), 1–66. https://doi.org/10.17016/ifdp.2018.1222 CR - Çetin, D. T. (2021). İslami Finans Sisteminde Sukuk (1st Edit). Ankara, Turkey: Gazi Kitabevi. CR - Çetin, D. T. (2020). İslami Finans Sisteminde Sukuk: Türkiye’de Sukuk Fiyatlarının Yapay Sinir Ağları Modeli ile Tahmini [Sukuk in Islamic financial system: Forecasting sukuk prices in Turkey with artificial neural network model]. (Doctoral dissertation, Burdur Mehmet Akif Ersoy University). CR - Çetin, D. T. (2019). Türkiye’de jeopolitik risk ve İslami hisse senedi endeksi (katılım 30) arasındaki nedensellik ilişkisi: Ampirik bir analiz [The causality relation between geopolitical risk and Islamic stock index (participation 30) in Turkey: An empirical analysis]. In S. Erdoğan, A. Gedikli, & D. Ç. Yıldırım (Eds.), ISEFE, International Congress of Islamic Economy, Finance and Ethics (pp. 108–119). Umuttepe Yayınları. CR - Dhamija, A. K., & Bhalla, V. K. (2010). Financial time series forecasting: Comparison of neural networks and ARCH models. International Research Journal of Finance and Economics, 49, 194–212. https://www.academia.edu/download/33817126/irjfe_49_15.pdf CR - Godlewski, C. J., Turk-Ariss, R., & Weill, L. (2013). Sukuk vs. conventional bonds: A stock market perspective. Journal of Comparative Economics, 41, 745–761. https://doi.org/10.1016/j.jce.2013.02.006 CR - Hatipoğlu, M., & Sekmen, T. (2018). Seçilmiş bazı risk faktörlerinin İslami borsalar üzerindeki etkileri [The impacts of some selected risk factors on Islamic stock markets]. MANAS Sosyal Araştırmalar Dergisi, 7(4), 1694–7215. CR - Hila, N. Z., Muhamad Safiih, L., & Mohamed, N. A. (2019). Empirical study of sukuk investment forecasting using artificial neural network base algorithm. International Journal of Innovations in Engineering and Technology, 13(3), 124–127. https://doi.org/10.21172/ijiet.133.19 CR - Hossain, A., Zaman, F., Nasser, M., & Islam, M. M. (2009). Comparison of GARCH, neural network and support vector machine in financial time series prediction. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 5909 LNCS, 597–602. https://doi.org/10.1007/978-3-642-11164-8_97 CR - IFSB. (2020). Islamic Financial Services Industry Stability Report 2020. Kuala Lumpur, Malaysi. https://www.ifsb.org/sec03.php CR - Ismail, N., & Arundina, T. (2019). Sukuk rating prediction: The case of corporate sukuk in Indonesia. Pertanika Journal of Social Sciences and Humanities, 27(S2), 63–77. https://core.ac.uk/download/pdf/286784180.pdf#page=77 CR - Livingstone, D. J. (2008). Artificial neural networks: methods and applications. Totowa, NJ, USA: Humana Press. CR - Mengi, D. F., & Metlek, S. (2020). Türkiye’nin Akdeniz bölgesine ait rüzgâr ekserjisinin çok katmanlı yapay sinir ağı ile modellenmesi [Modeling belongs to Turkey's Mediterranean coast wind of exergy multilayer neural network]. International Journal of Engineering and Innovative Research, 2(2), 102–120. http://dergipark.gov.tr/ijeir CR - Metlek, S., & Kayaalp, K. (2020). Derin öğrenme ve destek vektör makineleri ile görüntüden cinsiyet tahmini [Image gender prediction with deep learning and support vector machines]. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 8(3), 2208–2228. https://doi.org/https://doi.org/10.29130/dubited.707316 CR - Mohd Saad, N., Haniff, M. N., & Ali, N. (2019). Corporate governance mechanisms with conventional bonds and Sukuk’ yield spreads. Pacific Basin Finance Journal. https://doi.org/10.1016/j.pacfin.2019.02.001 CR - Naifar, N. (2016). Do global risk factors and macroeconomic conditions affect global Islamic index dynamics? A quantile regression approach. Quarterly Review of Economics and Finance, 61, 29–39. https://doi.org/10.1016/j.qref.2015.10.004 CR - Özbayoglu, A. M., Gudelek, M. U., & Sezer, Ö. B. (2020). Deep learning for financial applications : A survey. ArXiv:2002.05786v1. http://arxiv.org/abs/2002.05786 CR - Qian, X. (2017). Financial series prediction: Comparison between precision of time series models and machine learning methods. In arXiv. arXiv. CR - Raei, F., & Cakir, S. (2007). Sukuk vs. Eurobonds: Is there a difference in Value-At-Risk? In IMF Working Papers (WP/07/237). https://doi.org/10.5089/9781451868012.001 CR - Siddiqui, T. A., & Abdullah, Y. (2017). Testing for predictive ability of conventional and shariah ındices of selected Gulf countries and economic regions using neural network modelling. Journal of Islamic Economics, Banking and Finance, 13(1), 171–186. https://doi.org/10.12816/0051161 CR - Singh, R., & Srivastava, S. (2017). Stock prediction using deep learning. Multimedia Tools and Applications, 76, 18569-18584. https://doi.org/10.1007/s11042-016-4159-7 CR - Tealab, A., Hefny, H., & Badr, A. (2017). Forecasting of nonlinear time series using ANN. Future Computing and Informatics Journal. https://doi.org/10.1016/j.fcij.2017.05.001 CR - TKBB. (2020). Katılım bankaları sukuk ihraçları (2010-2019) [Sukuk issues of participation banks (2010-2019)]. https://tkbb.org.tr/Documents/Yonetmelikler/Katilim-Bankalari-2019.pdf CR - Wardani, L., Viverita, V., Husodo, Z. A., & Sunaryo, S. (2020). Contingent claim approach for pricing of sovereign sukuk for R&D financing in Indonesia. Emerging Markets Finance and Trade, 56(2), 338–350. https://doi.org/10.1080/1540496X.2019.1658067 CR - Xu, Z., Zhang, J., Wang, J., & Xu, Z. (2020a). Prediction research of financial time series based on deep learning. Soft Computing, 24(11), 8295–8312. https://doi.org/10.1007/s00500-020-04788-w CR - Yakut, E., Elmas, B., & Selahattin, Y. (2014). Yapay sinir ağlari ve destek vektör makineleri yöntemleriyle borsa endeksi tahmini [Predicting stock-exchange index using methods of neural networks and support vector machines]. Süleyman Demirel Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 19(1), 139–157. CR - Yiğiter, Ş. Y., Sarı, S. S., Karabulut, T., & Başakın, E. E. (2018). Kira sertifikası fiyat değerlerinin makine öğrenmesi metodu ile tahmini [Estimation of lease certificate price evaluation through machine learning method]. International Journal of Islamic Economics and Finance Studies, 4(3), 74–82. https://doi.org/10.25272/ijisef.412760 CR - Zhang, Y., Chu, G., & Shen, D. (2021). The role of investor attention in predicting stock prices: The long short-term memory networks perspective. Finance Research Letters, 38, 101484, 1–12. https://doi.org/10.1016/j.frl.2020.101484 UR - https://dergipark.org.tr/tr/pub/acin/issue//907990 L1 - https://dergipark.org.tr/tr/download/article-file/1678299 ER -