TY - JOUR T1 - TERMAL ENERJİ DEPOLAMADA POLİMER-NANO MALZEME KATKILI PARAFİN VAKSTAN ÜRETİLEN FAZ DEĞİŞİM MALZEMELERİ ÜZERİNE BİR DEĞERLENDİRME TT - A Review on Phase Change Materials Produced from Polymer-Nano Material Additive Paraffin Wax in Thermal Energy Storage AU - Özkan, Aysun AU - Özdemir, Çağrı Önder AU - Akgün, Hasret AU - Günkaya, Zerrin AU - Banar, Mufide PY - 2022 DA - August Y2 - 2022 DO - 10.17482/uumfd.955078 JF - Uludağ Üniversitesi Mühendislik Fakültesi Dergisi JO - UUJFE PB - Bursa Uludağ Üniversitesi WT - DergiPark SN - 2148-4155 SP - 877 EP - 896 VL - 27 IS - 2 LA - tr AB - Faz değişim malzemeleri (FDM) kullanılarak gizli ısının depolanması, termal enerji depolamada, oldukça etkili bir yoldur. Bu malzemeler, faz geçişi sırasında enerjiyi sabit sıcaklıkta gizli ısı formunda depolar ve depolanan aynı enerjiyi serbest bırakır. Parafin, kapsülleme gibi yöntemlerle sabit bir şekle getirilerek kullanılan önemli organik FDM'lerden birisidir. Herhangi bir teknik sınıf parafinin ekonomik maliyetinin yüksek olması, faz geçiş prosedürü sırasında sıvı sızıntısı, düşük termal iletkenlik ve düşük yüzey alanı gibi malzemenin termal performansını etkileyen birçok sınırlama, gizli ısı depolamada istenen fiziksel özellikleri ve termal performansı iyileştirmek için parafin vaks ile oluşturulan kompozit faz değişim malzemelerinin geliştirilmesini önemli kılmaktadır. Bu derleme makalede; parafin vaks kullanılarak elde edilmiş faz değişim malzemeleriyle ilgili çalışmalar özetlenmiş, küresel iklim değişikliği azaltım stratejileri çerçevesinde, çevrede aşırı miktarda olan, plastik, vaks, organik ve inorganik malzemelerin kompozit faz değişim malzemelerinde kullanılabilirliği ile ilgili öneriler sunulmuştur. KW - Faz Değişim Malzemeleri KW - Parafin Vaks KW - Termal Enerji Depolama KW - Termoplastikler N2 - The use of latent heat storage system using phase change materials (PCM) is an efficient way of storing thermal energy. These materials store energy in the form of latent heat at constant temperature during phase transition and release the same stored energy. Paraffin is one of the important organic PCMs used with methods such as shape stabilization and encapsulation. Due to many limitations affecting the thermal performance of the material, such as the high economic cost of any technical grade paraffin, fluid leakage during the phase transition procedure, low thermal conductivity and low surface area, in order to improve the desired physical properties and thermal performance in latent heat storage, it is important to develop composite phase change materials obtained with paraffin wax. This review paper summarizes studies on phase change materials obtained using paraffin wax, and recommendations on the use of plastic, wax and nanomaterial wastes, which are excessive in the environment, in composite phase change materials are presented within the framework of global climate change mitigation strategies. CR - 1. Abdelrazeq, H.W. (2016). Heat absorbers based on recycled polyethylene and paraffın wax for energy storage. Master’s Thesis, Qatar University, College of Arts and Sciences. doi: http://hdl.handle.net/10576/5098 CR - 2. Abdelrazeq, H., Sobolčiak, P., Al-Ali Al-Maadeed, M., Ouederni, M ve Krupa, I. (2019) Recycled polyethylene/paraffin wax/expanded graphite based heat absorbers for thermal energy storage: an artificial aging study. Molecules, 24(7): 1217. doi: https://doi.org/10.3390/molecules24071217 CR - 3. Abdou, S. M., Elnahas, H. H., El-Zahed, H., ve Abdeldaym, A. (2016) Thermal behavior of gamma-irradiated low-density polyethylene/paraffin wax blend. Radiation Effects and Defects in Solids, 171(5-6), 503-510. doi: https://doi.org/10.1080/10420150.2016.1213729 CR - 4. Alkan C., Kaya K., Sarı A. (2009). Preparation, Thermal Properties and Thermal Reliability of Form-Stable Paraffin/Polypropylene Composite for Thermal Energy Storage , 17(4), 254–258. doi:10.1007/s10924-009-0146-7 CR - 5. AlMaadeed, M. A., Labidi, S., Krupa, I. ve Karkri, M. (2015a) Effect of expanded graphite on the phase change materials of high density polyethylene/wax blends. Thermochimica Acta, 600, 35-44. doi: https://doi.org/10.1016/j.tca.2014.11.023 CR - 6. AlMaadeed, M. A., Labidi, S., Krupa, I. ve Ouederni, M. (2015b) Effect of waste wax and chain structure on the mechanical and physical properties of polyethylene. Arabian Journal of Chemistry, 8(3), 388-399. doi: https://doi.org/10.1016/j.arabjc.2014.01.006 CR - 7. Al Ghossein, R. M., Hossain, M. S., & Khodadadi, J. M. (2017). Experimental determination of temperature-dependent thermal conductivity of solid eicosane-based silver nanostructure-enhanced phase change materials for thermal energy storage. International Journal of Heat and Mass Transfer, 107, 697-711. doi: https://doi.org/10.1016/j.ijheatmasstransfer.2016.11.059 CR - 8. Aqel, A., Abou El-Nour, K. M., Ammar, R. A. ve Al-Warthan, A. (2012) Carbon nanotubes, science and technology part (I) structure, synthesis and characterisation. Arabian Journal of Chemistry, 5(1), 1-23. doi: https://doi.org/10.1016/j.arabjc.2010.08.022 CR - 9. Arasu, A., Sasmito, A., & Mujumdar, A. (2012). Thermal performance enhancement of paraffin wax with Al2O3 and CuO nanoparticles–a numerical study. Frontiers in Heat and Mass Transfer (FHMT), 2(4). doi: http://dx.doi.org/10.5098/hmt.v2.4.3005 CR - 10. Arena, U., Mastellone, M.L., Camino, G. ve Boccaleri, E. (2006) An innovative process for mass production of multi-wall carbon nanotubes by means of low-cost pyrolysis of polyolefins. Polymer Degradation and Stability, 91: 763-768. doi: https://doi.org/10.1016/j.polymdegradstab.2005.05.029 CR - 11. Arnaiz, N., Gomez-Rico, M.F., Gullon, I.M. ve Font, R. (2013) Production of carbon nanotubes from polyethylene pyrolysis gas and effect of temperature. Industrial and Engineering Chemistry Research, 52: 14847-14854. doi: https://doi.org/10.1021/ie401688n CR - 12. Arshad, A., Jabbal, M., & Yan, Y. (2020). Thermophysical characteristics and application of metallic-oxide based mono and hybrid nanocomposite phase change materials for thermal management systems. Applied Thermal Engineering, 181, 115999. doi: https://doi.org/10.1016/j.applthermaleng.2020.115999 CR - 13. Aydın, A.A. (2010). The Synthesis and Thermal Properties of Novel Organic Phase Change Materials. Doktora Tezi, İstanbul Teknik Üniversitesi, İstanbul CR - 14. Cárdenas, B. ve León, N. (2013) High temperature latent heat thermal energy storage: Phase change materials, design considerations and performance enhancement techniques. Renewable and Sustainable Energy Reviews, 27, 724-737. doi: https://doi.org/10.1016/j.rser.2013.07.028 CR - 15. Chaichan, M. T., & Kazem, H. A. (2018). Single slope solar distillator productivity improvement using phase change material and Al2O3 nanoparticle. Solar Energy, 164, 370-381. doi: https://doi.org/10.1016/j.solener.2018.02.049 CR - 16. Chaudhry, A. U., Lonkar, S. P., Chudhary, R. G., Mabrouk, A. ve Abdala, A. A. (2020) Thermal, electrical, and mechanical properties of highly filled HDPE/graphite nanoplatelets composites. Materials Today: Proceedings, 29, 704-708. doi: https://doi.org/10.1016/j.matpr.2020.04.168 CR - 17. Chen, L., Zou, R., Xia, W., Liu, Z., Shang, Y., Zhu, J., ... & Cao, A. (2012). Electro-and photodriven phase change composites based on wax-infiltrated carbon nanotube sponges. ACS nano, 6(12), 10884-10892. doi: https://doi.org/10.1021/nn304310n CR - 18. Coetzee, D., Venkataraman, M., Militky, J., & Petru, M. (2020). Influence of nanoparticles on thermal and electrical conductivity of composites. Polymers, 12(4), 742. doi: https://doi.org/10.3390/polym12040742 CR - 19. Ebrahimi, A., & Dadvand, A. (2015). Simulation of melting of a nano-enhanced phase change material (NePCM) in a square cavity with two heat source–sink pairs. Alexandria engineering journal, 54(4), 1003- 1017. doi: https://doi.org/10.1016/j.aej.2015.09.007 CR - 20. Elnahas, H. H., Abdou, S. M., El-Zahed, H. ve Abdeldaym, A. (2018) Structural, morphological and mechanical properties of gamma irradiated low density polyethylene/paraffin wax blends. Radiation Physics and Chemistry, 151, 217-224. doi: https://doi.org/10.1016/j.radphyschem.2018.06.030 CR - 21. Fang, G., Tang, F. ve Cao, L. (2014) Preparation, thermal properties and applications of shape-stabilized thermal energy storage materials. Renewable and Sustainable Energy Reviews, 40, 237-259. doi: https://doi.org/10.1016/j.rser.2014.07.179 CR - 22. Farid, M. M., Khudhair, A. M., Razack, S. A. K. ve Al-Hallaj, S. (2004) A review on phase change energy storage: materials and applications. Energy Conversion And Management, 45(9-10), 1597-1615. doi: https://doi.org/10.1016/j.enconman.2003.09.015 CR - 23. Freeman, T. B., Messenger, M. A., Troxler, C. J., Nawaz, K., Rodriguez, R. M., & Boetcher, S. K. (2021). Fused filament fabrication of novel phase-change material functional composites. Additive Manufacturing, 39, 101839. doi: https://doi.org/10.1016/j.addma.2021.101839 CR - 24. George, M., Pandey, A. K., Abd Rahim, N., Tyagi, V. V., Shahabuddin, S. ve Saidur, R. (2020) A novel polyaniline (PANI)/paraffin wax nano composite phase change material: Superior transition heat storage capacity, thermal conductivity and thermal reliability. Solar Energy, 204, 448-458. doi: https://doi.org/10.1016/j.solener.2020.04.087 CR - 25. Han, Z. ve Fina, A. (2011) Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review. Progress in Polymer Science, 36(7), 914-944. doi: https://doi.org/10.1016/j.progpolymsci.2010.11.004 CR - 26. Harmen, Y., Chhiti, Y., Alaoui, F. E. M. H., Bentiss, F., Elkhouakhi, M., Deshayes, L., ... & Bensitel, M. (2020, June). Storage efficiency of paraffin-LDPE-MWCNT phase change material for industrial building applications. In 2020 5th International Conference on Renewable Energies for Developing Countries (REDEC) (pp. 1-6). IEEE. doi: 10.1109/REDEC49234.2020.9163856 CR - 27. Hu, D., Han, L., Zhou, W., Li, P., Huang, Y., Yang, Z., & Jia, X. (2022). Flexible phase change composite based on loading paraffin into cross-linked CNT/SBS network for thermal management and thermal storage. Chemical Engineering Journal, 437, 135056. doi: https://doi.org/10.1016/j.cej.2022.135056 CR - 28. Intergovernmental Panel on Climate Change (IPCC), (2018). Global Warming of 1.5 °C, Special Report of the Intergovernmental Panel on Climate Change. Erişim adresi: https://www.ipcc.ch/site/assets/uploads/sites/2/2019/05/SR15_SPM_version_report_LR.pdf (Erişim Tarihi: 07.05.2021) CR - 29. JianShe, H., Chao, Y., Xu, Z., Jiao, Z., & JinXing, D. (2019). Structure and thermal properties of expanded graphite/paraffin composite phase change material. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 41(1), 86-93. doi: https://doi.org/10.1080/15567036.2018.1496199 CR - 30. Karaipekli, A., Biçer, A., Sarı, A., & Tyagi, V. V. (2017). Thermal characteristics of expanded perlite/paraffin composite phase change material with enhanced thermal conductivity using carbon nanotubes. Energy conversion and management, 134, 373-381. doi: https://doi.org/10.1016/j.enconman.2016.12.053 CR - 31. Katekar, V. P. ve Deshmukh, S. S. (2020) A review of the use of phase change materials on performance of solar stills. Journal of Energy Storage, 30, 101398. doi: https://doi.org/10.1016/j.est.2020.101398 CR - 32. Khudhair, A. M. ve Farid, M. M. (2004) A review on energy conservation in building applications with thermal storage by latent heat using phase change materials. Energy Conversion and Management, 45(2), 263-275. doi: https://doi.org/10.1016/S0196-8904(03)00131-6 CR - 33. Krupa, I., Miková, G. ve Luyt, A. S. (2007) Phase change materials based on low-density polyethylene/paraffin wax blends. European Polymer Journal, 43(11), 4695-4705. doi: https://doi.org/10.1016/j.eurpolymj.2007.08.022 CR - 34. Krupa, I., Nógellová, Z., Špitalský, Z., Malíková, M., Sobolčiak, P., Abdelrazeq, H. W., ... ve Al-Maadeed, M. A. S. (2015) Positive influence of expanded graphite on the physical behavior of phase change materials based on linear low-density polyethylene and paraffin wax. Thermochimica Acta, 614, 218-225. doi: https://doi.org/10.1016/j.tca.2015.06.028 CR - 35. Krupa, I. ve Luyt, A. S. (2000) Thermal properties of uncross-linked and cross-linked LLDPE/wax blends. Polymer Degradation and Stability, 70(1), 111-117. doi: https://doi.org/10.1016/S0141-3910(00)00097-5 CR - 36. Krupa, I. ve Luyt, A. S. (2001) Thermal and mechanical properties of extruded LLDPE/wax blends. Polymer Degradation and Stability 73(1), 157-161. doi: https://doi.org/10.1016/S0141-3910(01)00082-9 CR - 37. Kumar, P. M., Anandkumar, R., Sudarvizhi, D., Mylsamy, K. ve Nithish, M. (2020) Experimental and theoretical investigations on thermal conductivity of the paraffin wax using CuO nanoparticles. Materials Today: Proceedings, 22, 1987-1993. doi: https://doi.org/10.1016/j.matpr.2020.03.164 CR - 38. Lachheb, M., Karkri, M., Albouchi, F., Mzali, F. ve Nasrallah, S. B. (2014) Thermophysical properties estimation of paraffin/graphite composite phase change material using an inverse method. Energy Conversion and Management, 82, 229-237. doi: https://doi.org/10.1016/j.enconman.2014.03.021 CR - 39. Li, J., Xue, P., Ding, W., Han, J., & Sun, G. (2009). Micro-encapsulated paraffin/high-density polyethylene/wood flour composite as form-stable phase change material for thermal energy storage. Solar Energy Materials and Solar Cells, 93(10), 1761-1767. doi: https://doi.org/10.1016/j.solmat.2009.06.007 CR - 40. Li, Y., Li, J., Deng, Y., Guan, W., Wang, X., & Qian, T. (2016). Preparation of paraffin/porous TiO2 foams with enhanced thermal conductivity as PCM, by covering the TiO2 surface with a carbon layer. Applied energy, 171, 37-45. doi: https://doi.org/10.1016/j.apenergy.2016.03.010 CR - 41. Lin, S. C. ve Al-Kayiem, H. H. (2016) Evaluation of copper nanoparticles–Paraffin wax compositions for solar thermal energy storage. Solar Energy, 132, 267-278. doi: https://doi.org/10.1016/j.solener.2016.03.004 CR - 42. Lin, J., Ouyang, Y., Chen, L., Wen, K., Li, Y., Mu, H., ... & Long, J. (2022). Enhancing the solar absorption capacity of expanded graphite-paraffin wax composite phase change materials by introducing carbon nanotubes additives. Surfaces and Interfaces, 30, 101871. doi: https://doi.org/10.1016/j.surfin.2022.101871 CR - 43. Ling, Z., Chen, J., Xu, T., Fang, X., Gao, X., & Zhang, Z. (2015). Thermal conductivity of an organic phase change material/expanded graphite composite across the phase change temperature range and a novel thermal conductivity model. Energy Conversion and Management, 102, 202-208. doi: https://doi.org/10.1016/j.enconman.2014.11.040 CR - 44. López, S. Y. R., Rodrıguez, J. S. ve Sueyoshi, S. S. (2006) Low-temperature formation of alpha alumina powders via metal organic synthesis. AZo J. of Materials Online, 2. doi: 10.2240/azojomo0186 CR - 45. Magendran, S. S., Khan, F. S. A., Mubarak, N. M., Vaka, M., Walvekar, R., Khalid, M., ... ve Karri, R. R. (2019) Synthesis of organic phase change materials (PCM) for energy storage applications: A review. Nano- Structures & Nano-Objects, 20, 100399. doi: https://doi.org/10.1016/j.nanoso.2019.100399 CR - 46. Mhike, W., Focke, W. W., Mofokeng, J. P. ve Luyt, A. S. (2012) Thermally conductive phase-change materials for energy storage based on low-density polyethylene, soft Fischer–Tropsch wax and graphite. Thermochimica Acta, 527, 75-82. doi: https://doi.org/10.1016/j.tca.2011.10.008 CR - 47. Mohamed, N. H., Soliman, F. S., El Maghraby, H. ve Moustfa, Y. M. (2017) Thermal conductivity enhancement of treated petroleum waxes, as phase change material, by α nano alumina: Energy storage. Renewable and Sustainable Energy Reviews, 70, 1052-1058. doi: https://doi.org/10.1016/j.rser.2016.12.009 CR - 48. Molefi, J. A., Luyt, A. S. ve Krupa, I. (2010) Comparison of LDPE, LLDPE and HDPE as matrices for phase change materials based on a soft Fischer–Tropsch paraffin wax. Thermochimica Acta, 500(1-2), 88-92. doi: https://doi.org/10.1016/j.tca.2010.01.002 CR - 49. Moon, H., Miljkovic, N. ve King, W. P. (2020) High power density thermal energy storage using additively manufactured heat exchangers and phase change material. International Journal of Heat and Mass Transfer, 153, 119591. doi: https://doi.org/10.1016/j.ijheatmasstransfer.2020.119591 CR - 50. Motawie, M., Hanafi, S. A., Elmelawy, M. S., Ahmed, S. M., Mansour, N. A., Darwish, M. S. ve Abulyazied, D. E. (2015) Wax co-cracking synergism of high density polyethylene to alternative fuels. Egyptian Journal of Petroleum, 24(3), 353-361. doi: https://doi.org/10.1016/j.ejpe.2015.07.004 CR - 51. Mu, M., Basheer, P. A. M., Sha, W., Bai, Y. ve McNally, T. (2016) Shape stabilised phase change materials based on a high melt viscosity HDPE and paraffin waxes. Applied Energy, 162, 68-82. doi: https://doi.org/10.1016/j.apenergy.2015.10.030 CR - 52. Nazari, M. A., Maleki, A., Assad, M. E. H., Rosen, M. A., Haghighi, A., Sharabaty, H., & Chen, L. (2021). A review of nanomaterial incorporated phase change materials for solar thermal energy storage. Solar Energy, 228, 725-743. doi: https://doi.org/10.1016/j.solener.2021.08.051 CR - 53. Pradeep, N., Paramasivam, K., Rajesh, T., Purusothamanan, V. S. ve Iyahraja, S. (2021) Silver nanoparticles for enhanced thermal energy storage of phase change materials. Materials Today: Proceedings. doi: https://doi.org/10.1016/j.matpr.2020.02.671 CR - 54. Qu, Y., Wang, S., Tian, Y. ve Zhou, D. (2019) Comprehensive evaluation of Paraffin-HDPE shape stabilized PCM with hybrid carbon nano-additives. Applied Thermal Engineering, 163, 114404. doi: https://doi.org/10.1016/j.applthermaleng.2019.114404 CR - 55. Rathod, M. K. (2018) Thermal stability of phase change material. Phase Change Materials and Their Applications. doi: 10.5772/intechopen.75923 CR - 56. Ronca, S. (2017) Polyethylene. In Brydson's plastics materials. 247-278. Butterworth-Heinemann. doi: https://doi.org/10.1016/B978-0-323-35824-8.00010-4 CR - 57. Sciacovelli, A., Navarro, M. E., Jin, Y., Qiao, G., Zheng, L., Leng, G., ... ve Ding, Y. (2018). High density polyethylene (HDPE)—Graphite composite manufactured by extrusion: A novel way to fabricate phase change materials for thermal energy storage. Particuology, 40, 131-140. doi: https://doi.org/10.1016/j.partic.2017.11.011 CR - 58. Sharma, A., Tyagi, V. V., Chen, C. R. ve Buddhi, D. (2009) Review on thermal energy storage with phase change materials and applications. Renewable and Sustainable Energy Reviews, 13(2), 318-345. doi: https://doi.org/10.1016/j.rser.2007.10.005 CR - 59. Sobolciak, P., Karkri, M., Al-Maadeed, M. A. ve Krupa, I. (2016) Thermal characterization of phase change materials based on linear low-density polyethylene, paraffin wax and expanded graphite. Renewable Energy, 88, 372-382. doi: https://doi.org/10.1016/j.renene.2015.11.056 CR - 60. Sotomayor, M. E., Krupa, I., Várez, A. ve Levenfeld, B. (2014) Thermal and mechanical characterization of injection moulded high density polyethylene/paraffin wax blends as phase change materials. Renewable Energy, 68, 140-145. doi: https://doi.org/10.1016/j.renene.2014.01.036 CR - 61. Telkes, M. ve Raymond, E. (1949) Storing solar heat in chemicals. Heat. Vent. 46. URL: https://www.osti.gov/biblio/5118227 CR - 62. Tong, X., Li, N., Zeng, M., & Wang, Q. (2019). Organic phase change materials confined in carbon-based materials for thermal properties enhancement: Recent advancement and challenges. Renewable and Sustainable Energy Reviews, 108, 398-422. doi: https://doi.org/10.1016/j.rser.2019.03.031 CR - 63. Tony, M. A. (2021). Recent frontiers in solar energy storage via nanoparticles enhanced phase change materials: Succinct review on basics, applications, and their environmental aspects. Energy Storage, 3(4), e238. doi: https://doi.org/10.1002/est2.238 CR - 64. Trigui, A., Karkri, M. ve Krupa, I. (2014) Thermal conductivity and latent heat thermal energy storage properties of LDPE/wax as a shape-stabilized composite phase change material. Energy Conversion and Management, 77, 586-596. doi: https://doi.org/10.1016/j.enconman.2013.09.034 CR - 65. Trigui, A., Karkri, M., Boudaya, C., Candau, Y., Ibos, L. ve Fois, M. (2014) Experimental investigation of a composite phase change material: Thermal-energy storage and release. Journal of Composite Materials, 48(1), 49-62. doi: https://doi.org/10.1177/0021998312468185 CR - 66. United Nations Framework Convention on Climate Change (UNFCCC), (2015). Adoption of the Paris Agreement, Twenty-first session, Paris, L.9/Rev.1. Erişim adresi: https://unfccc.int/resource/docs/2015/cop21/eng/l09r01.pdf (Erişim Tarihi: 13.05.2021) CR - 67. Vakhshouri, A. R. (2020) Paraffin as phase change material. Paraffin Overview, 1-23. doi: 10.5772/intechopen.90487 CR - 68. Verma, S. K. ve Tiwari, A. K. (2015) Progress of nanofluid application in solar collectors: a review. Energy Conversion and Management, 100, 324-346. doi: https://doi.org/10.1016/j.enconman.2015.04.071 CR - 69. Wu, Y., Zhang, X., Xu, X., Lin, X. ve Liu, L. (2020) A review on the effect of external fields on solidification, melting and heat transfer enhancement of phase change materials. Journal of Energy Storage, 31, 101567. doi: https://doi.org/10.1016/j.est.2020.101567 CR - 70. Yadav, A., Verma, A., Kumar, A., Dashmana, H., Kumar, A., Bhatnagar, P. K., & Jain, V. K. (2021). Recent Advances on Enhanced Thermal Conduction in Phase Change Materials using Carbon Nanomaterials. Journal of Energy Storage, 43, 103173. doi: https://doi.org/10.1016/j.est.2021.103173 CR - 71. Zhang, Z. ve Fang, X. (2006) Study on paraffin/expanded graphite composite phase change thermal energy storage material. Energy Conversion and Management, 47(3), 303-310. doi: https://doi.org/10.1016/j.enconman.2005.03.004 CR - 72. Zou, D., Ma, X., Liu, X., Zheng, P., & Hu, Y. (2018). Thermal performance enhancement of composite phase change materials (PCM) using graphene and carbon nanotubes as additives for the potential application in lithium-ion power battery. International Journal of Heat and Mass Transfer, 120, 33-41. doi: doi.org/10.1016/j.ijheatmasstransfer.2017.12.024 UR - https://doi.org/10.17482/uumfd.955078 L1 - https://dergipark.org.tr/tr/download/article-file/1834085 ER -