TY - JOUR T1 - ON FUNCTION SPACES CHARACTERIZED BY THE WIGNER TRANSFORM AU - Kulak, Öznur PY - 2021 DA - July Y2 - 2021 DO - 10.33773/jum.958029 JF - Journal of Universal Mathematics JO - JUM PB - Gökhan ÇUVALCIOĞLU WT - DergiPark SN - 2618-5660 SP - 188 EP - 200 VL - 4 IS - 2 LA - en AB - Let $\omega _{i}$ be weightfunctions on $%%TCIMACRO{\U{211d} }%%BeginExpansion\mathbb{R}%EndExpansion$, (i=1,2,3,4). In this work, we define $CW_{\omega _{1},\omega _{2},\omega _{3},\omega_{4}}^{p,q,r,s,\tau }\left( %TCIMACRO{\U{211d} }%%BeginExpansion\mathbb{R}%EndExpansion\right) $ to be vector space of $\left( f,g\right) \in \left( L_{\omega_{1}}^{p}\times L_{\omega _{2}}^{q}\right) \left( %TCIMACRO{\U{211d} }%%BeginExpansion\mathbb{R}%EndExpansion\right) $ such that the $\tau -$Wigner transforms $W_{\tau }\left(f,.\right) $ and $W_{\tau }\left( .,g\right) $ belong to $L_{\omega_{3}}^{r}\left( %TCIMACRO{\U{211d} }%%BeginExpansion\mathbb{R}%EndExpansion^{2}\right) $ and $L_{\omega _{4}}^{s}\left( %TCIMACRO{\U{211d} }%%BeginExpansion\mathbb{R}%EndExpansion^{2}\right) $ respectively for $1\leq p,q,r,s<\infty $, $\tau \in \left(0,1\right) $. We endow this space with a sum norm and prove that $%CW_{\omega _{1},\omega _{2},\omega _{3},\omega _{4}}^{p,q,r,s,\tau }\left( %TCIMACRO{\U{211d} }%%BeginExpansion\mathbb{R}%EndExpansion\right) $ is a Banach space. We also show that $CW_{\omega _{1},\omega_{2},\omega _{3},\omega _{4}}^{p,q,r,s,\tau }\left( %TCIMACRO{\U{211d} }%%BeginExpansion\mathbb{R}%EndExpansion\right) $ becomes an essential Banach module over $\left( L_{\omega_{1}}^{1}\times L_{\omega _{2}}^{1}\right) \left( %TCIMACRO{\U{211d} }%%BeginExpansion\mathbb{R}%EndExpansion\right) $. We then consider approximate identities. KW - Wigner transform KW - Essential Banach module KW - Approximate identity CR - P. Boggiatto, G. De Donno, A. Oliaro, A class of quadratic time- frequency representations based on the short- time Fourier transform, Oper Theory, 172, 235-249, (2007). CR - P. Boggiatto, G. De Donno, A. Oliaro, Time- frequency representations of Wigner type and pseudo- differential operators, Trans Amer Math Soc, 362, 4955-4981, (2010). CR - R.S. Doran, J. Wichmann, Approximate identity and factorization in Banach modules, Lecture Notes in Math. Springer-Verlag, 768 (1979). CR - M. Duman, Ö. Kulak, On Function Spaces with Fractional Wavelet Transform, Montes Taurus J. Pure Appl. Math. 3 (3), 122–134 (2021). CR - R.H. Fischer, A.T. Gürkanlı, T.S. Liu, On a family of weighted spaces, Mathematica Slovaca, 46(1), 71-82 (1996). CR - I.G. Gaudry, Multipliers of weighted Lebesgue and measure spaces, Proc.Lon.Math.Soc., 19(3), 327-340 (1969). CR - K. Gröchenig, Foundations of Time-Frequency Analysis, Birkhauser, Boston (2001). CR - Ö. Kulak, A.T. Gürkanlı, On Function Spaces with Wavelet Transform in L-omega-p-R, Hacettepe Journal of Mathematics and Statistics, 40(2), 163-177 (2011). CR - H. Reiter, Classical Harmonic Analysis and Locally Compact Group, Oxford Universty Pres, Oxford (1968). CR - A. Sandıkçı, Continuity of Wigner-type operators on Lorentz spaces and Lorentz mixed normed modulation spaces, Turkish Journal of Mathematics, 38, 728- 745 (2014). CR - A. Sandıkçı, Multilinear tau -wigner transform, J. Pseudo-Differ. Oper. Appl., 11, 1465-1487 (2020). CR - H.C. Wang, Homogeneous Banach algebras, New York: Marcel Dekker Inc. (1977). UR - https://doi.org/10.33773/jum.958029 L1 - https://dergipark.org.tr/tr/download/article-file/1845077 ER -