TY - JOUR T1 - Effect of Chloride Salt Ions onto Coal Flotation based on Contact Angle and Bubble-Particle Attachment Time TT - Klorür Tuz İyonlarının Temas Açısı ve Kabarcık-Tane Yapışma Süresi Açısından Kömür Flotasyonuna Etkisi AU - Özdemir, Orhan AU - Güngören, Can AU - Baktarhan, Yasin AU - Şahpaz, Oktay AU - Kurşun Ünver, İlgin AU - Özkan, Şafak Gökhan PY - 2022 DA - May DO - 10.21205/deufmd.2022247119 JF - Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi JO - DEUFMD PB - Dokuz Eylül Üniversitesi WT - DergiPark SN - 1302-9304 SP - 553 EP - 562 VL - 24 IS - 71 LA - en AB - This study was aimed to reveal the effect of K+, Na+, Ca2+, and Mg2+ ions on the bubble-particle interactions of high-rank coal with contact angle and bubble-particle attachment time studies. The results for the contact angle experiments indicated that the contact angle of the coal, which was 62° in the absence of ions, increased slightly in the presence of mono- and divalent ions and reached a maximum (67°) in the presence of 1∙10-1 mol/dm3 Mg2+, and the effect of K+ ions on the contact angle was minimal. Furthermore, the results for the bubble-particle attachment time experiments showed that the bubble-particle attachment time of coal, which was measured as 4.5 ms in the absence of ions, decreased as a function of ion concentration from 1∙10-2 mol/dm3 to 1 mol/dm3. While the bubble-particle attachment times of coal particles in the presence of K+/Na+ and Ca2+/Mg2+ at low concentrations were around 2-3 ms and 1-2 ms, respectively, the increase in the concentration slightly changed the attachment time which decreased to less than 1 ms except for K+ ions. Overall, it can be concluded from this study that the effect of these dissolved ions in water was more prominent on the bubble-particle attachment time of the coal particles rather than the contact angle which showed no significant change. Also, the specific ion effect was determined as “Mg2+ > Ca2+ > Na+ > K+” in terms of the bubble-particle interactions in the presence of these ions. KW - Chloride Salt Ions KW - Coal KW - Flotation KW - Bubble-Particle Attachment Time KW - Contact Angle N2 - Bu çalışma, K+, Na+, Ca+2 ve Mg+2 iyonlarının yüksek kaliteli kömürün kabarcık-tane etkileşimleri üzerindeki etkisini, temas açısı ve kabarcık-tane yapışma süresi çalışmaları ile ortaya koymayı amaçlamıştır. Temas açısı deney sonuçları, iyon yokluğunda 62° olan kömürün temas açısının, bir ve iki değerlikli iyonların varlığında hafifçe arttığını, 1∙10-1 mol/dm3 Mg+2 varlığında maksimuma (67°) ulaştığını ve K+ iyonunun temas açısı üzerindeki etkisinin minimum olduğunu göstermiştir. Ayrıca, kabarcık-tane yapışma süresi deney sonuçları, iyon yokluğunda 4,5 ms olarak ölçülen kömürün kabarcık-tane yapışma süresinin, iyon konsantrasyonunun bir fonksiyonu olarak 1∙10-2 mol/dm3 ile 1 mol/dm3 arasında azaldığını göstermiştir. K+/Na+ ve Ca+2/Mg+2 varlığında düşük konsantrasyonlarda kömür tanelerinin kabarcık-tane yapışma süreleri sırasıyla 2-3 ms ve 1-2 ms civarındayken, konsantrasyondaki artış yapışma süresini biraz değiştirmiş ve K+ iyonları hariç 1 ms’nin altına düşürmüştür. Genel olarak, bu çalışmadan, sudaki bu çözünmüş iyonların etkisinin önemli bir değişiklik göstermeyen temas açısından ziyade, kömür tanelerinin kabarcık-tane yapışma süresi üzerinde daha belirgin olduğu sonucuna varılabilir. Ayrıca bu iyonlar varlığında kabarcık-tane etkileşimleri açısından spesifik iyon etkisi “Mg+2 > Ca+2 > Na+ > K+” olarak belirlenmiştir. CR - Xia, Y., Zhang, R., Cao, Y., Xing, Y., Gui, X. 2020. Role of Molecular Simulation in Understanding the Mechanism of Low-Rank Coal Flotation: A Review, Fuel, Vol. 262, 116535. DOI: 10.1016/j.fuel.2019.116535 CR - Laskowski, J.S. 2001. Coal flotation and fine coal utilization. Elsevier, Amsterdam, The Netherlands, 368p. CR - Gungoren, C., Guven, O., Cinar, M., Ozdemir, O. 2019. An Investigation of the Effect of Clay Type on Coal Flotation Along with DLVO Theoretical Analyses, International Journal of Coal Preparation and Utilization, Vol., 1-13. DOI: 10.1080/19392699.2019.1603146 CR - Gungoren, C. 2019. An Investigation of Air/Water Interface in Mixed Aqueous Solutions of KCl, NaCl, and DAH, Physicochemical Problems of Mineral Processing, Vol. 55, 1259-1270. DOI: 10.5277/ppmp19050 CR - Bournival, G., Ata, S. 2021. An Evaluation of the Australian Coal Flotation Standards, Minerals, Vol. 11. DOI: 10.3390/min11060550 CR - An, M., Liao, Y., Cao, Y., Hao, X., Ma, L. 2021. Improving Low Rank Coal Flotation Using a Mixture of Oleic Acid and Dodecane as Collector: A New Perspective on Synergetic Effect, Processes, Vol. 9. DOI: 10.3390/pr9030404 CR - Hancer, M., Celik, M.S., Miller, J.D. 2001. The Significance of Interfacial Water Structure in Soluble Salt Flotation Systems, Journal of Colloid and Interface Science, Vol. 235, 150-161. DOI: 10.1006/jcis.2000.7350 CR - Ozdemir, O., Celik, M.S., Nickolov, Z.S., Miller, J.D. 2007. Water Structure and Its Influence on the Flotation of Carbonate and Bicarbonate Salts, Journal of Colloid and Interface Science, Vol. 314, 545-51. DOI: 10.1016/j.jcis.2007.05.086 CR - Ozdemir, O., Karaguzel, C., Nguyen, A.V., Celik, M.S., Miller, J.D. 2009. Contact Angle and Bubble Attachment Studies in the Flotation of Trona and Other Soluble Carbonate Salts, Minerals Engineering, Vol. 22, 168-175. DOI: 10.1016/j.mineng.2008.06.001 CR - Ozdemir, O., Ersoy, O.F., Guven, O., Turgut, H., Cinar, M., Celik, M.S. 2018. Improved Flotation of Heat Treated Lignite with Saline Solutions Containing Mono and Multivalent Ions, Physicochemical Problems of Mineral Processing, Vol. 54, 1070-1082. DOI: 10.5277/ppmp18118 CR - Celik, M.S., Hancer, M., Miller, J.D. 2002. Flotation Chemistry of Boron Minerals, Journal of Colloid and Interface Science, Vol. 256, 121-131. DOI: 10.1006/jcis.2001.8138 CR - Yoon, R.H., Sabey, J.B. 1982. Coal Flotation in Inorganic Salt Solutions. USA. CR - Laskowski, J.S. 1994. Coal Surface Chemistry and Its Role in Fine Coal Beneficiation and Utilization, Coal Preparation, Vol. 14, 115-131. DOI: 10.1080/07349349408905229 CR - Aplan, F.F. 1993. Gaudin Lecture: Coal Properties Dictate Coal Flotation Strategies, Mining Engineering, Vol. 45, 83-96. CR - Ozdemir, O., Cinku, K., Uslu, T., Kılıc, E., Celik, M.S. 2013. Flotation Behavior of Bituminous and Lignite Coals in Salty Water (in Turkish), Afyon Kocatepe University Journal of Sciences and Engineering, Vol. 13, 1-14. DOI: 10.5578/fmbd.5218 CR - Ozkan, A., Ilikay, I.S., Esmeli, K. 2019. Lignite Flotation in Inorganic Salt Solutions, International Journal of Coal Preparation and Utilization, DOI: 10.1080/19392699.2019.1700959 CR - Klassen, V.I., Mokrousov, V.A. 1963. An Introduction to the Theory of Flotation., Butterworths, London, 493p. CR - Paulson, O., Pugh, R.J. 1996. Flotation of Inherently Hydrophobic Particles in Aqueous Solutions of Inorganic Electrolytes, Langmuir, Vol. 12, 4808-4813. DOI: 10.1021/la960128n CR - Harvey, P.A., Nguyen, A.V., Evans, G.M. 2002. Influence of Electrical Double-Layer Interaction on Coal Flotation, Journal of Colloid and Interface Science, Vol. 250, 337-43. DOI: 10.1006/jcis.2002.8367 CR - Ozdemir, O., Taran, E., Hampton, M.A., Karakashev, S.I., Nguyen, A.V. 2009. Surface Chemistry Aspects of Coal Flotation in Bore Water, International Journal of Mineral Processing, Vol. 92, 177-183. DOI: 10.1016/j.minpro.2009.04.001 CR - Albijanic, B., Ozdemir, O., Nguyen, A.V., Bradshaw, D. 2010. A Review of Induction and Attachment Times of Wetting Thin Films between Air Bubbles and Particles and Its Relevance in the Separation of Particles by Flotation, Advances in Colloid and Interface Science, Vol. 159, 1-21. DOI: 10.1016/j.cis.2010.04.003 CR - Ozdemir, O., Du, H., Karakashev, S.I., Nguyen, A.V., Celik, M.S., Miller, J.D. 2011. Understanding the Role of Ion Interactions in Soluble Salt Flotation with Alkylammonium and Alkylsulfate Collectors, Advances in Colloid and Interface Science, Vol. 163, 1-22. DOI: 10.1016/j.cis.2011.01.003 CR - Ren, H., Liao, Y., Yang, Z., An, M., Hao, X., Song, X., Liu, Z. 2021. Effect of Fe2+ on Low Rank Coal Flotation Using Oleic Acid as Collector, Powder Technology, Vol. 393, 250-256. DOI: 10.1016/j.powtec.2021.07.078 CR - Miller, J.D., Laskowski, J.S., Chang, S.S. 1983. Dextrin Adsorption by Oxidized Coal, Colloids and Surfaces, Vol. 8, 137-151. DOI: 10.1016/0166-6622(83)80081-X. CR - Gungoren, C., Ozdemir, O., Wang, X., Ozkan, S.G., Miller, J.D. 2019. Effect of Ultrasound on Bubble-Particle Interaction in Quartz-Amine Flotation System, Ultrasonics Sonochemistry, Vol. 52, 446-454. DOI: 10.1016/j.ultsonch.2018.12.023 CR - Laskowski, J., Iskra, J. 1970. Role of Capillary Effects in Bubble-Particle Collision in Flotation, The Institution of Mining and Metallurgy Section C, Vol. 79, C6–C10. CR - Bournival, G., Zhang, F., Ata, S. 2019. Coal Flotation in Saline Water: Effects of Electrolytes on Interfaces and Industrial Practice, Mineral Processing and Extractive Metallurgy Review, Vol. 42, 53-73. DOI: 10.1080/08827508.2019.1654474 CR - Sun, X., Zhang, L., Xie, Z., Li, B., Liu, S. 2021. Improvement of Low‐Rank Coal Flotation Based on the Enhancement of Wettability Difference between Organic Matter and Gangue, Journal of Surfactants and Detergents, Vol. 24, 269-279. DOI: 10.1002/jsde.12482 CR - Huang, L., Song, S., Gu, G., Wang, Y. 2020. The Interaction between Cations in Saline Water and Calcium Bentonite in Copper Flotation, Mining, Metallurgy & Exploration, Vol. 38, 693-699. DOI: 10.1007/s42461-020-00297-4 CR - Bournival, G., Ata, S. 2021. The Impact of Water Salinity and Its Interaction with Flotation Reagents on the Quality of Coal Flotation Products, Journal of Cleaner Production, DOI: 10.1016/j.jclepro.2021.129519 CR - Ozdemir, O. 2013. Specific Ion Effect of Chloride Salts on Collectorless Flotation of Coal, Physicochemical Problems of Mineral Processing, Vol. 49, 511-524. DOI: 10.5277/ppmp130212 CR - Li, C., Somasundaran, P. 1993. Role of Electrical Double Layer Forces and Hydrophobicity in Coal Flotation in NaCl Solutions, Energy & Fuels, Vol. 7, 244-248. CR - Kurniawan, A.U., Ozdemir, O., Nguyen, A.V., Ofori, P., Firth, B. 2011. Flotation of Coal Particles in MgCl2, NaCl, and NaClO3 Solutions in the Absence and Presence of Dowfroth 250, International Journal of Mineral Processing, Vol. 98, 137-144. DOI: 10.1016/j.minpro.2010.11.003 CR - Tao, D. 2005. Role of Bubble Size in Flotation of Coarse and Fine Particles—a Review, Separation Science and Technology Vol. 39, 741-760. DOI: 10.1081/ss-120028444 CR - Bournival, G., Pugh, R.J., Ata, S. 2012. Examination of NaCl and MIBC as Bubble Coalescence Inhibitor in Relation to Froth Flotation, Minerals Engineering, Vol. 25, 47-53. DOI: 10.1016/j.mineng.2011.10.008 CR - Ata, S. 2008. Coalescence of Bubbles Covered by Particles, Langmuir, Vol. 24, 6085-6091. DOI: 10.1021/la800466x CR - Ata, S. 2009. The Detachment of Particles from Coalescing Bubble Pairs, Journal of Colloid and Interface Science, Vol. 338, 558-65. DOI: 10.1016/j.jcis.2009.07.003 CR - Bournival, G., Du, Z., Ata, S., Jameson, G.J. 2014. Foaming and Gas Dispersion Properties of Non-Ionic Frothers in the Presence of Hydrophobized Submicron Particles, International Journal of Mineral Processing, Vol. 133, 123-131. DOI: 10.1016/j.minpro.2014.08.010 CR - Orvalho, S., Ruzicka, M.C., Olivieri, G., Marzocchella, A. 2015. Bubble Coalescence: Effect of Bubble Approach Velocity and Liquid Viscosity, Chemical Engineering Science, Vol. 134, 205-216. DOI: 10.1016/j.ces.2015.04.053 CR - Craig, V.S.J. 2004. Bubble Coalescence and Specific-Ion Effects, Current Opinion in Colloid & Interface Science, Vol. 9, 178-184. DOI: 10.1016/j.cocis.2004.06.002 CR - Tsang, Y.H., Koh, Y.H., Koch, D.L. 2004. Bubble-Size Dependence of the Critical Electrolyte Concentration for Inhibition of Coalescence, Journal of Colloid and Interface Science, Vol. 275, 290-7. DOI: 10.1016/j.jcis.2004.01.026 CR - Botello-Alvarez, J.E., Baz-Rodriguez, S.A., Gonzalez-Garcia, R., Estrada-Baltazar, A., Padilla-Medina, J.A., Alatorre, G.G., Navarrete-Bolanos, J.L.N. 2011. Effect of Electrolytes in Aqueous Solution on Bubble Size in Gas Liquid Bubble Columns, Industrial & Engineering Chemistry Research, Vol. 50, 12203-12207. DOI: 10.1021/ie200452q CR - Quinn, J.J., Sovechles, J.M., Finch, J.A., Waters, K.E. 2014. Critical Coalescence Concentration of Inorganic Salt Solutions, Minerals Engineering, Vol. 58, 1-6. DOI: 10.1016/j.mineng.2013.12.021 CR - Nguyen, P.T., Hampton, M.A., Nguyen, A.V., Birkett, G.R. 2012. The Influence of Gas Velocity, Salt Type and Concentration on Transition Concentration for Bubble Coalescence Inhibition and Gas Holdup, Chemical Engineering Research and Design, Vol. 90, 33-39. DOI: 10.1016/j.cherd.2011.08.015 CR - Marucci, G., Nicodemo, L. 1967. Coalescence of Gas Bubbles in Aqueous Solutions of Inorganic Electrolytes, Chemical Engineering Science, Vol. 22, 1257–1265. DOI: 10.1016/0009-2509(67)80190-8 CR - Craig, V.S.J., Ninham, B.W., Pashley, R.M. 1993. Effect of Electrolytes on Bubble Coalescence, Nature, Vol. 364, 317-319. DOI: 10.1038/364317a0 CR - Craig, V.S.J., Ninham, B.W., Pashley, R.M. 1993. The Effect of Electrolytes on Bubble Coalescence in Water, The Journal of Physical Chemistry, 10192-10197. DOI: 10.1021/j100141a047 CR - Prince, M.J., Blanch, H.W. 1990. Transition Electrolyte Concentrations for Bubble Coalescence, AIChE Journal, Vol. 36, 1425-1429. DOI: 10.1002/aic.690360915 CR - Sadeghi, F., Vissers, A.J. 2020. Experimental Investigation of Bubble Size in Flotation: Effect of Salt, Coagulant, Temperature, and Organic Compound, SPE Production & Operations, DOI: 10.2118/200495-PA CR - Li, C., Somasundaran , P. 1991. Reversal of Bubble Charge in Multivalent Inorganic Salt Solutions-Effect of Magnesium, Journal of Colloid and Interface Science, Vol. 146, 215-218. DOI: 10.1016/0021-9797(91)90018-4 CR - Craig, V.S.J. 2011. Do Hydration Forces Play a Role in Thin Film Drainage and Rupture Observed in Electrolyte Solutions?, Current Opinion in Colloid & Interface Science, Vol. 16, 597-600. DOI: 10.1016/j.cocis.2011.04.003 CR - Wu, Z., Wang, X., Liu, H., Zhang, H., Miller, J.D. 2016. Some Physicochemical Aspects of Water-Soluble Mineral Flotation, Advances in Colloid and Interface Science, Vol. 235, 190-200. DOI: 10.1016/j.cis.2016.06.005 CR - Wang, B., Peng, Y. 2014. The Effect of Saline Water on Mineral Flotation – a Critical Review, Minerals Engineering, Vol. 66-68, 13-24. DOI: 10.1016/j.mineng.2014.04.017 CR - Gungoren, C., Islek, E., Baktarhan, Y., Kurşun Unver, I., Ozdemir, O. 2018. A Novel Technique to Investigate the Bubble Coalescence in the Presence of Surfactant (MIBC) and Electrolytes (NaCl and CaCl2), Physicochemical Problems of Mineral Processing, Vol. 54, 1215-1222. DOI: 10.5277/ppmp18158 UR - https://doi.org/10.21205/deufmd.2022247119 L1 - http://dergipark.org.tr/tr/download/article-file/1968285 ER -