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ON THE SINGULAR CAUCHY PROBLEM FOR
A GENERALIZATION OF
THE EULER POISSON DARBOUX EQUATION

Nege Dernek

Abstract

In this paper, a solution is given for the following singilar Cauchy prob-
lem: b
Au = uy + (at+ Z)ut

u(z,0) = f(z), ue(z,0) = 0.

The solution is an uniformly and absolutely convergent power series. Where
a,b € R, f(z) is a continuously differentiable function.
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1 Introduction

The singular Cauchy problem (abbreviated CP) for the Euler Poisson Darboux
(EPD) equation can be formulated as follows: Let f(z) = f(z1,%2,...,2,) be
an arbitrary function which is differentiable continuously. It is required to find a
function u(z) which satisfies the following conditions:

k
Au = uy + ;Ut (1)
u(z,0) = f(z), ut(2,0) =0 (2)
where in the EPD equation (1) it is understood that A is n-dimensional Laplace
operator, x = (z1,%a,...,%,) is a point in R™, k is a real parameter and ¢t is

time variable. The well-known case of the EPD equation is £ = 0 for which (1)
reduces to the wave equation. The EPD equation for special values of k£ and n has
occurred in many classiccal problems for over two centuries. Euler first considered
equation (1) for n = 2. Later Poisson treated the case n = 2 and the singular
Cauchy problem for the case n = 4,k = 2. Darboux again considered (1) for
n =2,0<k < 2. Asgeirsson gave a solution of the singular Cauchy problem for
all positive integers n and k = n — 2. Equation (1), for n = 1,k = —-1,-2,...
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appears in the work of Diaz and Martin [9]. Kapilevic [11] has given solutions of
(1),(2), for n = 1,2 and 0 < k < 1. A complete solution of the singular Cauchy
problem covering all values of k and n has been given recently by Weinstein [13],
[14], Diaz and Weinberger [10] and Blum [2]. For analytic initial functions f(z),
(1), (2) singular CP was solved by Walter [11] and Dernek [8]. In this articles the
solution is given by absolutely and uniformly convergent power series. Another
initial value problem for EPD Equation is the regular CP. In the general mean
the regular CP was solved by Davis [4], [5]. Copson [3] gave another solution of
this problem in any space of even number of dimensions. A solution of the series
form is given by Asral [1]. When we would like to generalize the CP (1), (2) we
can chose the parameter k as a function 1(¢) which is regular at neighborhood of
= 0 or in all R-space. Then (1), (2) becomes as follows:

Au=uy + z’b—(tt—)-ut (3)
u(z,0) = f(z), w(z,0) = 0. (4)

Two generalizations for the Cauchy problem of the EPD equation is given by

Dernek in [6],[7].
This paper is concerned with a solution of the series form of the following

Cauchy problem (5),(6). In this problem the function ¥(¢) is chosen by 9(t) =
at? +b,a>0,b+1 > 0;

b
Au = U + (at + Z)Ut (5)

u((L‘,O) = f((L‘),'u,t((L‘,O) =0. (6)

where a,b, are real parameters and f(z) is an initial function. f(z) must be
infinitely differentiable and the sequence (JA” f|) must be majorized by a suitably
chosen sequence which has positive terms. .

Let us consider the following series

u(f> t,a, b) = iuk (t> a, b)Akf((L‘) o (7)

k=0

where, ug(t,a,b) = 1 and A°f = f, A% = A(A*1f),k = 1,2,... (see [7]). We
would like to see which conditions are necéssary for (7) is a special solution of the
CP (5), (6). We can consider (7) as a power series with respect to Af. When (7)
is derived term by term with respect to ¢ and these values is written in (5) we
obtain the following recurrence relations which are ordinary differential equations
d? b b, d B =
aﬁun(t,a, )+ (at + Z)zﬁun(t,a, ) =tUn_1(t,a,b) (n>1) (8)
where 1o(t,a,b) = 1. Let us un(t,a,b),(n > 1) are the solutions of the equations
system (8). Thus (7) is a formal solution of CP (5) — (6). Here the functions u,,
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have the following initial conditions:
un(0,2,8) = 0, dun(Oab)_O (neN). )

Let us consider the Cauchy problem C'P(1). A formal solution of CP(1) is
1(t,a,b) = ZNl Rt
r=0

If we substitute w1, Ed;ul, a‘%ul in CP(1) we obtain the following recurrence rela-
tions:

1
Nig= s, Niu=Nig=...= Nygrp1 =
1,0 B+ 1) 1,1 1,3 12041 =0
(2r +2)(2r + 1+ b)N1 27 + 2arN1 2,2 =0 (r=1,2,...). (10)
Let us write the relations (10) for r = 1,2,...,n and product them, we obtain:
b), I'(r+1)
N — _1 T 7 ( 27
ver = GV G b 2+ 2)

where (b),, = (b+2)(b+4)...(b+ 2r). Hence a solution of CP(1) is

1(t,a,b) = t* Z (2T + 2 (§;T++21) 5 (tVa)" (a>0).

Let us seek a formal solution of CP(2) as follows
Us(t,0,b) = 3. Np,art? .
r=0

Substituting ug, -l%uz, -;—f;uz in CP(2), we obtain

. 1
) A —
20T 94+ 1)(b+3)°

(2r +4)(2r + 3 +b)Nagr +a(2r + 2)No 20— = N1 or (r=1,2,...). (11)

Now assuming that

Nyy=Nyz=...=Nypr41 =0

L'+ 1))y 42

N = {— Ta’ = e
2o = (1 O G S N b ar s P L2
we have the following difference equations from (11):
1
(r=1,2,...). (12)

TP2,2r — P2,2r—2 = (27‘ T 2)
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Let us 2,0 = 35 and write the equations (12) for r = 1,2,...,n and sum of them.
We have w29, = D5 m Thus a solution of C'P(2) is

(b + 1)(b),, .
2(t,a,b) = t4z (2r+4)I‘(b+2r+-2F4 Z(2k+2 Jtve)™ (a>0).

Let us assume

INCES D T0)
—{_1\T T 2r4+2n—4
Nn-12r = (=1)'a (2r +2n — 2)I(b+ 27 + 2n —

2) Pn—1,2r (r=1,2,.. )

and suppose
>
Up—1 (t, a, b) = ZNn—1)2Tt2n+2r_2

r=0

is a formal solution of the CP(n — 1). Now let us consider CP(n). We can see
2(t,a,b) ZN P

is a solution of this problem, where

F(b + 1)(b)2r+2n—2 (7, -19 )
@r + 2000 + 2r + 2n) P2 T DS

Nn,z,. = (—1)‘,‘(111

This is a consequence of the Mathematical Induction Principle. If we substitute
2

the values of u,, zdzun, diiﬁun in CP(n), we obtain the general recurrence relations

and the following general difference equations:

(27‘ + 271)(27‘ +2n—-1+ b) n,2r + a(2r + 2n — 2)Nn,2,~_2 = Nnp_1,2r

1

Pn2r — Pnar-2 = m‘%a,w (r=12,..) (13)

On the other hand, if we take a = 0 the equation (5) becomes EPD equation.
The functions u, (¢, a, b) are continuous with respect to a (this will prove the next
section). Hence we can write a = 0 in u,(t, a, b),thus

Db+ 1))y y2n_2 2n
(Pn,Ot .
2nI'(b+ 2n)

un(4,0,0) =

But under the condition b+ 1 > 0, a solution of the series form of Cauchy problem

(1), (2) is (see [7])
u(f,t,b) Zun (t,b)A™ f

n=0
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where ]
t2n

2npl(b+1)(b+ 3)...(b+2n —1)
From uy,(%,0,b) = un(t,b) we obtain ¢, =1/(2" 1(n —1)1) (n>2).

Now let’s consider the difference equation (13) for r =1,2,...,s and let’s sum
of them. Then we have, (n =2,3,...;s=0,1,2,...)

unp(t,b) = n=1,2,...).

kn-1 ke

1 1 1
= 14
Pn.2s & zj_ 2kn_1+ (271 - 2 Z an_z + (271 4) Z:O 2k, + 2 ( )
Thus the series which gives a solution of CP(n) can be written as follows:
L0+ 1)(0)g, 420~ 2
n(t,a,b) = " ren 2 t : 15
a,b) = Z( 2r + 2n)T(b + 27 + 2n) nar(tV/a) (15)

Where, a > 0 and @p 2, > 0 for b+ 1 > 0 which are given by (14), n > 2,7 > 0.
When we fix the indices n then the coefficient ¢, 2, increases with respect to r.

2 Convergence of The Series u,(t,a,b)

In this section it will be shown that the series u,(t,a,b) (n = 1,2,...) are uniformly
convergent. Thus the series which are obtained with derivated u, term by term
are well defined. Furthermore we will show that all of our hypothesis turn out
to be true. For this purpose first we calculate the radius of convergence of the
series uy (t,a,b). It is clear that |N12,42|/|N1,2:| = O(r~!). Hence the series u;
convergent for every real values of ¢. Under the condition b + 1 > 0, the series
4y is uniformly convergent for every ¢ in R.1t is also shown that the series v is
differantiable infinitely and it is a continuous function of the variables a and ¢ for
a > 0. Let us consider the series us(t, a,b) and the following numbers

We would like to obtain convenient upper bounds for the numbers @3 9,. Let us
consider the following inequalities

n

l\)lr—t

V2,27 =
r=0

. r ’
1
In(r+1)—-1< —<lIlnr (r>2,7€ N).
r+)-1<X g <hor (2aren)

it can be written

1
In(r + 2) <1+Z—-—<1+1n(r+1)
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Hence from, tim, oo ‘pzr'” = 0, we have for sufficiently great r, @22, = o(r) and

then we obtain
pa,2r = O(r) (16)

and
|N2 242/ | N2,20| = O(r™1).

Thus the radius of convergence of the series us(t,a,b) is infinite and us (%, a,b)
convergence absolutely and uniformly for every ¢t € R. Now, we would like to find
an available upper bound for the numbers

1
P3,2r = Z mﬁoz,zk-
k=0
Since the coefficients (2,24 are monotone increasing for k = 0,1, ...,r we can write

1
3,20 = Z(T + 12,27

;From (16) @32, = O(r?). Then we have
|N3,2r42| /| Na,2r| = O(r ™).

In general we assume that

Pp-1,2r = O(Tn—2) (b+1>0). (17)
For to prove ¢na, = O(r"!) we can consider the coefficients ¢n_1 a1, (k =
0,1,...,r) are monotone increase and then
P = e Pn—1,2k < ! == (r+ 1)n—_1,2r.
2k +(2n - 2) 2n — 2

By the last inequality, (17) and the induction hypothe31s we can write @pn 2, =
O(r"~1) and then,
|Nn,2r+2]/|Nnar| = O(r71).

Hence for every n € N and b+1 > 0,a > 0, the radius of convergence of the series
#n(t,a,b) are infinite. We can give the following Lemma from above observation.

Lemma 1. 1 The series un(t,a,b),(n € N) are absolutely and uniformly conver-
gent for every t when b+ 1> 0 and a > 0. They are continuous functions of the
parameter a and the variable t. Then the functions u,(t, a,b) can be differentiated
infinitely.
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3 The Upper Bounds

Now we would like to find an available upper bound for the series, u, (¢, a,b),

(n € N) which is absolutely and uniformly convergent. For this purpose we may
transform (8) to an equal integral equation system. For to define the transforma-
tion first we write the equation (8) for t = ¢:

dz

Zl? (€,a, b) = un—1(€7a: b) (n € N) (18)

un(é"%b) + (a§ + g)gdéun

Uo(ﬁ,a b) =1

We product (18) with £%€2€”/2 and integrate both sides with respect to € on (0, ).
We consider the initial conditions (9), then

N
djﬁ“n(ﬂ,a, b) = ptemor /2 / g0 Py, _1(6,a,b)d6 (neN).  (19)
0

If we integrate both sides of (19) with respect to p on (0,t), from the initial
conditions (9) we have :

b
un(t, 0, b) = /0 t /0 ”(5) ety (6,0, 0)dude (nEN).  (20)

up(t,a,b) =1

(20) is an integral representation for solutions of C'P(n) which is given by (15).
In this section we shall give which conditions are necessary for the equality of
(15) and (20). We consider that the integrals (20) are calculated on the domain
B which is defined with the points (0,0), (¢,0), (¢,t) and the line £ = p. If we
transform the variables as follows

T: p=p’- 2,r=£.
p=p —¢& P

The functional determinant of this transformation is %(l_;:_f_)l = ﬂllﬁr—) (r#1).
Under this transformation (20) is transformed to the following integral:

. t t2(1—1'2) d’l'dp
0< un(t’a7b) = / / ,,,be—ap/2 (T V p/(l - 7‘2) a b) ( ,,,2) (21)
. r=0 Jp=0 -

(21) can be written as follows for n = 1:

1 t°(1—r°) —ap/2
0<uy(t,a,b =/ / ————drdp. 22
= 1( ) =0 J p=0 2(1 _ 7.2) P ( )
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For to find an upper bound to the function u; we take t?(1—r?) = s(¢,r) > 0 and
integrate (21) with respect to p then we obtain

t2 1 7,b /2
< < — —2(1—e™
0 <wui(t,a,b) < 5 /r:o - (1I-e Ydr

Since 1 — e~%/2 < as/2 for as > 0 and from (22) it can be written
t2 1 b : t2
< b) < — dr < ——
O_ul(t,a,)_2/T:0r T”2(b+1)

where b+ 1 > 0. Thus the function (20) is equivalent to the sum of the series (15)
for n = 1 under the conditions ¢ > 0,6+ 1 > 0.
Now we consider the double integral (21) for n = 2. It can be written

1
< ap/2 14 b
0 <t 0,b) = / / T2 Y g,

. 1 s "
—a
<t PTEF) /r:O/p::O —are *12drdp

t4 1 ,,,b+2 /2
- — (1 — as/2)e=*]dr.
T /r:o L1~ (1~ as/2)e=o dr

where s = t>(1 —r2) > 0. Let m = as/2 > 0. From the following inequality we
obtain

t4

Oswlted) < mmrner e

We assume that
' 2n—2

-1 — Db+ 1)(b+3)...{(b+2n—3) (23)

O<’U,n 1(t(1b)

where a > 0,b+ 1 > 0. From (20) and (23) it can be written as follows for
s=1t3(1-1r?),

$2n 1 s b+2n—2 L /2

0< t,a,b n—1_—ap
100) € G ey oo g P e

n—1 Sn—p—le—s

t2n /1 ,,,b+2n 2 ( '
= — n— D1~ — 7.
2= Hn — D[blpyan-3) Jr=o " M ; I'(n —p) )

where [b)(3,—1) = (b+1)(b+3) ... (b+2n~—1). From the following inequality which
is easily proved with mathematical induction principle

Z_: s le” }<s™
Tln—p) ° —




we obtain,
t2n
—22lb+1)(0+3)...(b+2n—1)

0 < up(t,a,b) < (n € N). (24)

Thus the expression of the series form and the integral form of the functions
un(t,a,b), n € N are equivalent when a > 0,b+1 > 0. Now we can study for the
convergence problem of the solution of the Cauchy problem (5), (6) with respect
to the above results. Let us

u(z,t,a,b) = i Un(t,a, b)A™ f (25)
n=0Q

where u,(t,a,b) is given by (15). For our aim we can write the upper bounds of
the functions as follows:

G+1)(b+3)...(b+2n—1)>G+1)(b+2)...(b+n)

where b+ 1 > 0. But for every n € N we can find a number d which is written as

follows:
dA*b+1)(b+2)...(b+n)>n!

where d > 1. Hence

t2n dnt2n dng2n
< < (n=1,2,...).
2onl(b+1)(b+3)...(b+2n—1) ~ 2nnln!l = (2n)!
JFrom (24) and the above inequality we can write:
drni2n )
0 < un(t,a,b) < (n=12...). (26)

(2n)!

4 The Solution of The Singular CP (5), (6)

We have seen that the functions u,(¢, a, b) have represented with the power series
(15) when @ > 0,b+ 1 > 0. And it has seen that the functions u,(¢,a,b) have
bounded as in (26). Thus the series which is defined as follows,

n42n
o(f,t,a,8) = Zdt A )

can be taken a majorant for the function (25) that is a solution of the singular
Cauchy problem (5), (6). And then we can express the following theorem.

Theorem 1. 1 Let f(zy,xa,...,2,) s differentiable continuously infinitely
with respect to its variables and let a > 0,0+ 1 > 0. The function u(f,t,a,b),
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which is a solution of the singular Cauchy problem (5), (6), is given by the following
series: '

u(f,t,a,b) = iun(t,a,b)A"f (27) :

n=0

where the funétions un(t, a,b), (n € N) are expressed with (15). The series (27)
is absolutely and uniformly convergent in the space R™ x R when the following
property is satisfied for the initial function f(z)

|A™f| = o((2n)!), (n € N).
The series (27) is absolutely and uniformly convergent in the subspace of R® x R
which contains the plane t = 0 when the following property is satisfied for the

initial function f(z)
|A™f] = O((2n)Y), (n € N).

Corollary 1. 1 If it is written a = 0 in the solution (27) we obtain the solution
of the singular problem of the EPD Equation which is given [10] as follows;

_ d (b)Zn—thn n
u(f,t,8) =T(b+1) Y ot S AnS.

n=0

Corollary 1. 2 If it is written b = 0 in the equation (5) we obtain the series
solution of the singular Cauchy problem

Au = uy + atuy
‘ u(a:,O,a) :f(m))ut(m)o)a') =0
which is given by Dernek [6]. The solution is
e r p24...2n42r -2) 2421 AT
U’(fataa') - Z{Z( 1) a (27, + 2n)' Qon,Zrt }A f

n=0 r=0

where pn ar is defined by (14).
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