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COMMUTATIVITY OF RINGS W I T H 
CONSTRAINTS ON COMMUTATORS 

Moharram A. Khan 

Abstract. In this paper, we study the commutativity of a ring R satis
fying the polynomial identity xt[xn,y]yr = ±[x,ym]ys (resp. a;*[a;n,y]yr = 
±ys[x, ym]), for all x,y € R, where m,n,r,s and t are some non-negative 
integers such that m > 0, n > 0, and m = n i f n + i ^ l and m + + 
The main results of the present paper assert that a. semiprime ring R is 
commutative i f (m,n,r,s,t) ^ (0,0,0,0,0) and commutativity of an asso
ciative ring R follows with property Q(m), for m > 1, n > 1, that is for all 
x,y G R, m[x,y] = 0 implies [x,y] = 0. I t is also shown that the above 
results are true for s-unital rings. Finally, our results generalize some of 
the well-known commutativity theorems for rings (see [1, 2, 5, 10, 12, 
15]). 

A M S Subject Classifications (1991) : 16U80 

Keywords and phrases : Commutativity theorems, polynomial identi
ties, torsion-free rings, s-unital rings, zero-divisors. 

1. Introduction 

Throughout, R wi l l be an associative ring (may be without unity 1), 
Z(R) the center of R, C(R) the commutator ideal of R, D(R) the set of all 
zero-divisors of R and N(R) the set of all nilpotent elements of R. For a ring 
R we denote by Ropp the opposite ring of R, that is, the ring with the same 
elements and addition as R, but with opposite multiplication '0' defined 
by x 0 y = y x. We wil l omit the sign '0' of the opposite multiplication. 
For any x,y G R, [x, y] = xy — yx. By GF(q) we mean the Galois field 
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(finite field) with q elements, and (GF(q))2 the ring of all 2 x 2 matrices 

over GF(q). We set eu = Q ,ei2 = ^ , e 2 i = ^ and 

e22 = ^ in (GF{p))2, a prime p. 

In a recent paper [1], Abujabal and Peric considered s-unital (left or 

right s-unital) ring R in which for any pair of elements x,y £ R, there 
exist non-negative integers m,n,s, and t, m > 0 or. n > 0 and s ^ t if 
m = n = 1 such that a;* [a;n,y] = ± [x,ym] xs or x1 [x,ym] = ± xs[x, ym] 
for all x,y G R. 

The objective of this paper is to investigate the commutativity of a 

ring R satisfying the polynomial identity 

(1.1) x* [xn, y]yr = ± [x, ym)ys 

or 

(1.2) xl [xn, y] yr = ± ys[x, ym] 

for some given non-negative integers m,n,r,s and t. 

Remark 1.1. In the statement of (1.1) and (1.2), we consider the ± 
sign same for all x,y E R; each of (1.1) and (1.2) represents two different 
identities. But i f one takes the ± sign varying with x and y, then (1.1) and 
(1.2) are not identities (see [10, 14]). 

2. P r e l i m i n a r y results 

Definition 2.1. A ring R is called right (resp. left) s-unital i f x 6 xR 
(resp. x G Rx) for each x G R. Further R is called s-unital i f it is both 
right as well as left s- unital, that is, x G xR U Rx for each x G R. 

Definition 2.2. I f R is an s-unital (resp. a right s-unital or a left s-unital) 
ring, then for any finite subset F of R, there exists an element e G R such 
that xe = ex = a;(resp. xe = x or ex = x) for all x € F. Such an element e 
is called the pseudo (resp. pseudo right or pseudo left) identity of F in R. 

Definition 2.3. For a ring R and a positive integer n, we say that R has 
the property Q(n) if all commutators in R are n-torsion free, that is, if 
n[x,y] = 0 implies [x,y] = 0 for all x,y G R. 
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Remark 2.1. Clearly, every n-torsion free ring R has the property Q(n) 
and every ring R has the property Q(l). I f a ring R has the property Q(n)) 

then R has the property Q(m) for any factors m of n. 
I n the proof of our results, we need the following known results. 

Lemma 2.1 [8]. Let x and y be elements in a ring R. I f [x, [x,y]] — 0, 
then [xk,y] = k xk~1 [x,y], for any positive integer k. 

Lemma 2.2 [4]. Let R be a ring with 1, and let x and y be elements of 
R. I f dxm[x,y] = 0 and d(x + l)m[x,y] = 0, for some integers m > 1 and 
c? > 1, then necessarily ci[a;,y] = 0. 

L e m m a 2.3 [9]. Let / be a polynomial in n non- commuting indetermi-
nates x \ , X 2 , x s , ,xn with integer coefficients. Then the following state
ments are equivalent: 

(i) For any ring R satisfying the polynomial identity / = 0, C(R) is nil . 

(ii) For every prime p, (G(F(p))2 fails to satisfy f — 0. 

(iii) Every semiprime ring satisfying / = 0 is commutative. 

L e m m a 2.4 [13]. Let i i be a ring with unity 1, and let d and m be 
positive integers. I f (1 — ym) x = 0, then (1 — ydm) x = 0 for all x, y 6 R. 

Lemma 2.5 [5]. Let R be a ring, and let n > 1 be a fixed integer. I f 
xn — x E Z(R) for each x E R, then i? is commutative. 

L e m m a 2.6 [15]. Let R be right (resp. left) s-unital ring. I f for each 
pair of elements x,y E R, there exists a positive integer k = k(x,y) and an 
element e = e(x,y) E R such that exk = xk and eyk = yk (resp. xke = xk 

and yke — yk), then i? is an s-unital. 

3. A commutat iv i ty theorem for semiprime rings 

Theorem 3.1. Let m,n,r,s and t be fixed non-negative integers such 
that (m,n,r,s,t) ^ (0,0,0,0,0). Let R be a semiprime ring satisfying the 
polynomial identity (1.1) (resp. (1.2)). Then R is commutative. 
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Proof. Let R satisfy (1.1). But x = en and y = eyi G (GF(p))2 for a 
prime p, fail to satisfy (1.1). By Lemma 2.3, R is commutative. 

I f R satisfies (1.2), then x — e22 and y = e\i G (GF(p))2 for a prime 

p, fail to satisfy (1.2). Hence R is commutative by Lemma 2.3. 

Remark 3.1. Since there are non-commutative rings with R? C Z(R) 
neither of the conditions (1.1) and (1.2) guarantees the commutativity in 
arbitrary rings. 

One might ask a natural question: What additional conditions are 

needed to ensure the commutativity for arbitrary rings which satisfy (1.1) 
or (1.2)? To investigate the commutativity of such a ring R, we need an 
extra condition on R, which is given in Definition 2.3. 

4. C o m m u t a t i v i t y theorems for rings w i t h unity 1 

Theorem 4.1. Let R be a ring with unity 1 satisfying the polynomial 
identity (1.1) (resp. (1.2)) for some given non-negative integers m > 0, n > 
0, r, s and t such that n + t > 1. Moreover, i f n + t > 1 (resp. m + s > 1 
for r = 0), and R has Q(n) property for m > 1, n > 1 and Q(t + 1) 
property for n = l,t > 0, then R is commutative. 

We shall prove here the following results called steps. 

Step 4.1. Let R be a ring with unity 1 satisfying the polynomial identity 
(1.1) (resp. (1.2)) for some given non-negative integers m > 0, n > 0, r, s 
and t such that n + t > 1 and R has Q(n) property for m > l , n > 1. 
Then N(R) C Z(R). 

Proof. Let a be an arbitrary element in N(R). Then there exists a posi
tive integer p such that 

(4.1) ak G Z(R) for all integers k >p, p minimal. 

I f p = 1, then a G Z(R). Let p > 1 and put b = aP~l. By (4.1) we 

have 

(4.2) bk G Z(R) and 6* [x,b] = [x,b] bk = 0 for all a; G R and k > 1. 



Replacing x by b in (1.1) (resp. (1.2)), we get 
bl [bn,y] yr = ± [b,ym] ys (resp. 6* yr = ±y s [6 ,y m ] ) for all y E R. 

Let n + i > 1. Then three cases arise, that is ri > 1, t > 1 or 

n = i = 1. I n the first two cases using (4.2), we get 

(4.3) [b,ym]ys= 0 (resp. ys [b,ym] = 0). 

Let m = 1 in (4.3). Then we have 

(4.4) [b,y] ys = 0 (resp. ys [b,y] = 0). 

Replacing y by y + 1 in (4.4) and using Lemma 2.2, we obtain [b, y] = 0 for 
all y & R, that is a p _ 1 E Z(R), a contradiction. 

Let m > 1. Replace a; by 1 + a; in (l.l)(resp. (1.2)), by (4.2), and the 

above two identities obtained from (1.1) (resp. (1.2)) for x = b, we get 

n[b,y]yr = 0 for all y E R. 

Since n > 1, an application of the property Q(n), yields 

[b,y]yr = 0M^y^R. 

Replacing y by y + 1 in the last identity and using Lemma 2.2, we get 

[b, y] = 0, a contradiction. 

Finally, let n = t = 1 in (1.1) (resp. (1.2)). 

Replacing x by 1 + x, in (1.1) (resp. (1.2)), and using (1.1) (resp. (1.2)), 
we get 

(l + x)[x,yj yr = x[x,y] yr. 

This implies that 
[x, y]yr = 0 for all x,y E R. 

Replacing y by y + 1 in the last identity and using Lemma 2.2, we get 
[a;, y] = 0 for all x, y E R, that is, N(R) C Z(R). 

Step 4.2. Let R be a ring satisfying the polynomial identity (1.1) (resp. 
(1.2)) for some given non-negative integers m > 0, n > 0, r, s and t such 
that n + t > l(resp. (n + t > 1 for s = 0 or m + s > 1). Then the 
commutator ideal C(R) is nil , i.e. C(R) C N(R). 
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Proof. Let n +1 > 1. Then the elments x = e\2 and y = en in (GF(p))2 
show that the ring (GF(p))2 fails to satisfy (1.1), and also (1.2) for s = 0. 

I f s > 1, then the elements a; = en ,y = e n + e\2 in (GF(p))2 fail to 

satisfy (1.2). 
Let m + s > 1. Then the elments a; = en and y = ei2 in (G\F(p))2 

show that the ring (<JJF(P))2 fails to satisfy (1.2). 
Hence, by Lemma 2.3, C(R) C iV(i2). 

Remark 4 .1 . From the Steps 4.1 and 4.2, for the ring R, we get 

(4.5) C(R) C N{R) C Z(i?). 

By (4.5), R satisfies [a;, [a;, y]] = 0 for all x,y E R, and from Lemma 2.1 the 
identities (1.1) and (1.2) are equivalent and can be written in the form 

(4.6) nxn+t-1 [x,y] yr = ±mym+s-1 [x,y]. 

Step 4.3. Let R be a ring with unity 1 satisfying the identity (4.6) for 
some given non-negative integers m > 0,n > 0,r, s and t. For any x,y E 
R, n[x,y] = 0 if and only i f m[a;,y] = 0. Moreover, R has Q(n) property 
if and only if R has Q(m) property. Let m,n be relatively prime integers. 
Then R has both Q(m) and Q{n) properties. 

Proof. By hypothesis, n[a;,y] = 0 for some x,y £ R. Then we have 

n a n + i - 1 [ a , / 3 ] / ? r = 0 for a e { i , l | i ) 

and /?G{y, 1 + y} . 

In view of (4.6), we have 

m j5m+s~l [a, ¡3} = 0. for aE{x,l+x} 
and fi£{y,l + y}-

This implies that 

m ym+s-1 [x,y] = 0 and m(y + l)m+s~l [Xiy] = 0. 

Using Lemma 2.2, we get 
•m[x,y] = 0. 
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Similary, i f m[x,y] = 0, then n[x,y] = 0. 

Let R be a ring with Q(m) property. I f n[x, y] = 0, for some x, y G R, 

then m[x,y] = 0. By Q(m) property, [x,y] = 0. Thus, i? has also Q(n) 
property. 

Similarly, one can prove that if R has Q(n) property, then R has also 

Q(m) property. 
Let m,n be relatively prime integers. Suppose that m[x,y] = 0, for 

some x, y G R. Then n[x,y] = 0. Since m and n are relatively prime, 
[x,y] = 0. Hence R has Q(m) property and also Q(n) property. 

Proof of Theorem 4.1 . Keeping the Remark 4.1 in mind, it suffices to 
assume that the ring R satisfies the identity (1.1). 
Replacing x by px in (1 .1) , we get 

pn+t xt [xn,y] yr = ±p [x,ym]ys for allx,y G R. 

Combining this identity with (1.1), we get 

(pn+t-p) [x,ym}ys= o. 

In view of Lemma 2.1, one gets 

(Pn+t -p) m [x,y]ym+s-1 = 0 for all x,y G R. 

Replace y by y + 1 in the last expression and use Lemma 2.2, we get 

(pn+t -p) m [x,y] = 0. 

Let d = m(pn+t — p) > 1. Then d[x,y] = 0, for all x,y G R. Hence 

[xd,y] = dx^^^y] = 0, that is, 

(4.7) xd E Z{R) for all x G E and d = (pn+t -p)m>l. 

Let n > 1. Replacing a; by a;71 in (1.1), we get 

(4.8) a ; " £ [ ( ^ T , i / ] / = ±K,2/m]y S-
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Now, we have 

xnt [ ( a ; n j n ) yj y r _ n ^ j iM-fi fa - l ) y J y r _ 

= n x ^ - ^ + ^ ^ y J y ' ' ) 
= ± n a : < n - 1 X n + i > [a:, y m ] y s 

[xn,ym]ya=nxn-1[xiym]ya. 

From the above, we have 

n xn~l [x,ym] ys - m ^ - 1 ^ ^ , y m ] y s = 0. 

nxn~l (l-x^-^n+t-^)[x,ym]ys = 0. 

In view of Lemma 2.4, we get 

(4.9) nxn-\l-xd{n-l)i-n+t-l))[x,ym)ys = 0. 

Clearly one can prove that the polynomial identity (1.1) implies that 

(4.10) x1' [xn\y]yr' = [ * , y m V \ 

for all x,y G R and r' — mr + r, s' = ms + s and t' — nt + t. 
I t is noticed that the ring R is isomorphic to a subdirect sum of sub-

directly irreducible rings Ri,i 6 I . As homomorphic image of R, each of 
the rings Ri has a unity 1 and satisfies all the identities satisfied by R. But 
Ri does not necessarily satisfy Q{n) for m > 1, n > 1 (resp. Q(t + 1) for 
n = l , i > 0 ) . 

Now, consider the ring R{ for some fixed index i £ I . I f iT is the in
tersection of all non-zero ideals of Ri, then H ^ {0} and He = {0} for all 
central zero divisors c of Ri. 

I f « is any zero divisor of Ri, then (4.9) can be written as 

nun-1 (1 - ud {n-l^n+t-l))[u,ym]ys = 0. 

Let nun-l[u,ym] ys ^ 0. Then 1 - u <*(n - i)(n+t-i ) w i U b e a c e n t r a l z e r o 

divisor c of i G / . We have 

{0} • = - = H-Hc = H. 
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This gives a contradiction because H ^ {0}. Thus nun 1 [u, ym] ys = 0, 
and by Lemma 2.1, we obtain 

mnun-l[u, y]ym+s-1 = 0 for all y G Ri and u G 

Replacing y by y + 1 in the last expression and using Lemma 2.2, we get 

(4.11) mnun-1[u,y] = 0 for all y £ Ri and u G Z?(i?i). 

Combining (4.10) and (4.11), we get 

u4' K 2 , y ) yr' = 0 for all y G i2f and -u G D(Äj). 

Replacing y by y + 1 in the last expression and using Lemma 2.2, we get 

[un2,y] = 0 for all y e Ri and n G D(Ri). 

I n view of (4.10), Lemmas 2.1 and 2.2, we get 

m2 [u,y] = 0 for all y E Ri,u E D(Ri). 

This implies that [ u , y m 2 ] = m 2 y m Z _ 1 [ i i , y ] = 0 for all y E Ri and 
u E D(Ri). Hence 

(4.12) [u,ym2] = OiovallyERi, uED(Ri). 

Let 2 G Z(Ri), center of Ri. Replacing x by zx in (1.1), we get 

£ n+ io; i[a; n,y]y r = (̂±[21, ym]ys) 
= ^a; i[a; n,y]y r. 

(z n + i - .*)2 ;V>yk/ r = o. 

Replacing y by y + 1 and using Lemma 2.2, we get 

(zn+t-z)xt[xn,y] = 0. 

By Lemma 2.1, we have 

n{zn+t - z)xn+t-1[x,y) = 0. 

Replacing x by x + 1 and using Lemma 2.2, we get n{zn+t — z) [a;, y] = 0. 
Thus, by Lemma 2.1, we get 

{zn+t-z)[xn,y] =n(zn+t-z)xn-1[x,y] = 0 for all x, y E Ri and z E Z{Ri). 
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(4.13) (zn+t - z)[x,n y] = 0 for all x,y G Ri and z G Z(Ri). 

Clearly, from (4.7) and (4.13), we find 

(4.14) - y
d ) [ x

n , y] = 0 for all x and y in Ri. 

Now, let y G I f [xm2n,y] = 0, then one can write 

[ a ; m " , y 9 —y] = 0 for all positive integers q > 1. 

Let [xm2n,y\ ^ 0. Then [xn,y] / 0. Since [xn,y] £ 0, by (4.12), -
y d G D(Ri), so - y i s also in D ( i i j ) . In view of (4.12), we have 
(4.15) 
[xm2n,yp - y] = 0 for all x, y in Ri and p = d (n + t - 1) + 1 > 1. 

Since i £ I satisfies (4.15), the original ring R also satisfies (4.15). 
Therefore, R has Q(n) property, and by Step 4.3, also Q{m) property. 
Combining (4.14) along with Lemmas 2.1 and 2.2, we finally get [x, yp—y] = 
0 for all x,y G R and some positive integer p > 1. Hence R is commutative 
by Lemma 2.5. 

I f n = l,t > 0, then the identity (1.1), by Lemma 2.1, gives 

By an application of the Q(t + 1) property, R is commutative. 5. C o m m u t a t i v i t y theorems for s -unital rings 

Theorem 5.1. Let R be a right (resp. left) s-unital ring satisfying the 
hypothesis of Theorem 4.1. Then R is commutative. 
We begin with 

Step 5.1. Let R be a right (resp. left) s-unital ring satisfying the polyno
mial identity (1.1) (resp. (1.2)) for some non-negative integers m > 0,n > 
0, r, s and t such that n + t > 1 (resp. m + s > 1 for r = 0). Then R is 
s-unital. 
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Proof. Let R be a right (resp. left) s-unital ring, x,y arbitrary elements 
of R, and e an element of R such that xe = x and ye = y (resp. ex = 
x and ey = y). 

Let i? be a right s-unital ring satisfying (1.1) for some non-negative 

integers m > 0, n > 0, r, s and i such that n + t > 1. 
Replacing y by e in (1.1), we get 

(5.1) x n + V + 1 T ( a ; - e m a ; ) . 

I f n + 1 > 1 or t > 1, then (5.1) gives a; = e m £ , i.e., s-unital ring. 
Let i = 0. Then n > 1, and hence (5.1) becomes 

x = emx±xnTexn. 

This implies that i? is s-unital ring. 
Let R be a left s-unital ring satisfying (1.2) for some given non-negative 

integers m > 0, n > 0, r, s and i such that m + s > 1 for r = 0. 
Replace a; by e in (1.2) one gets 

(5.2) yr+l-yenyrT(ym+s ~ym+se). 

I f r > 0, then (5.2) gives y m + s = y m + s e . 

Similarly, for r > 0 one gets a i m + s = £ m + s e when m + s > 0. By 

Lemma 2.6, i? is s-unital ring. 

Proof of Theorem 5.1. In view of Step 5.1 R is s-unital and, by the 
Proposition 1 of [7], we may assume that R has unity 1. Hence R is com
mutative by Theorem 4.1. 

In particular, for r = 0, we have the following: 

Theorem 5.2. Let R be a right (resp. left) s-unital ring satisfying (1.1) 
(resp. (1.2)) for some given non-negative integers m > 0,n > 0,r, s and t 
such that n +1 > 1 (resp. m + s > l ) . l f r = 0,m + s > 0 and R has Q(m) 
property for m > 1, n > 1, and Q(s + 1) property for m = 1, s > 0, then R 
is commutative. 
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Proof I f r = 0 and R satisfies (1.1) (resp. (1.2)), then the ring R itself 
(resp. the opposite ring Ropp of R) satisfies the polynomial identity 

[ym,x]ys = ±xt[y,xn}(xeSp.[ym,x]ys = ±[y, xn]ys). 

Hence, the ring R in Theorem 5.2 is commutative by Theorem 5.1. 

Theorem 5.3. Let R be a right (resp. left) s-unital ring satisfying the 
polynomial identity (1.1) (resp. (1.2)) for some given non-negative integers 
m > 0, n > 0, r, s and t such that n + 1 > 1 (resp. m + s > 1). I f r = 0, and 
m, n are relatively prime integers, then R in commutative. 

Proof. In view of Step 5.1, R is s-unital. Now, we may assume that R is 
a ring with unity 1. From Theorems 5.1 and 5.2, i t is enough to prove that 
R has the properties Q(m) and Q(n). 
Taking b as in the proof of Step 4.1 and r — 0, we have 

(5.3) n[b, y) = 0 for all y G R. 

Let r — 0. Using the same arguments as above, we get 

(5.4) m[x, b} = 0 for all x e R. 

Since m, n are relatively prime integers, by (5.3) and (5.4) we get [x, b] = 0 
for all x G R, that is, 6 G Z(R). Hence N{R) C Z(R) and by Step 4.2, 
R satisfies (4.6) and also (4.7). Hence, in view of Step 4.3, m[x,y] = 0 is 
equivalent to n[x, y] = 0 for all x,y G R. Clearly, m, n are relatively prime, 
R has both Q(m) and Q(^) properties. 

The following results are immediate consequences of the above results. 

Corollary 5.1. Let m > n > 1 be fixed integers with m , n > 1 and let 
R be a right (resp. left) s-unital ring satisfying the polynomial identity 
[xy, xn ± ym] for all x,y G R. Then R is commutative if R satisfies one of 
the following conditions: 

(i) i2 has the property Q(m); 

(ii) R has the property Q(n); 

(iii) m, n are relatively prime. 
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Proof. By hypothesis, we have 

(5.4) x[xn,y] = ±[x,ym]y. 

I f R is a right s-unital ring , then Corollary 5.1 follows from Theorems 5.1 
and 5.2. Clearly, the identity (5.4) is s-unital when R is a left s-unital ring. 

Finally, if m = n = 1, then the Corollary 5.1 shows that a right (resp. 

left) s-unital ring R having the product of two elements with their sum (or 
difference) is necessarily commutative. 

Corollary 5.2. [2, Theorem] Let rn,n,r and t be fixed non-negative 
integers such that m > 0 or n > 0, and r = 0 or t > 0 if m = n = 1. I f R is 
a ring which satisfies the polynomail identity xt[xn,y]yr = ±[x,ym], then 
R is commutative provided that one of the following additional conditions 
is fulfilled: 

(i) m = 0, and R is an s-unital (resp. a right s-unital for t = 0, or a 
left s-unital for r = 0) ring with the property Q(n); 

(ii) n = 0, and R is a right or left s-unital ring with the property Q(m).; 

(hi) m = 1, n > 1, or m > 1, n — 1 and r = t — 0; 

(iv) m > 1, n > 1, and R is a right or left s-unital ring with the property 
Q H ; 

(v) m > l , n = l , r + i > 0 , and R is a right or left s-unital ring with the 
property Q(m ± 1) for t — 0). 

Corollary 5.3 [12, Theorem 2]. Let m, t be fixed non-negative integers. 
Suppose that R satisfies the polynomial identity £c*[a;,j/] = [x,ym]. 

(i) I f R is a left s-unital, then R is commutative except for (m, i ) = (1,0). 

(ii) I f R is right s-unital, then R is commutative except for m = 1, t = 0 
and also m = 0, t > 0. 

Corollary 5.4 [1, Theorem 1]. Let m > n > 1 be fixed integers with 
m, n > 1 and let R be a left (resp. a right) s-unital ring satisfying the 
polynomial identity x [xn,y] = [ym,x] y for all x,y G R. Then R is 
commutative. 
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Remark 5.1. I n Corollary 5.3, if n > 1 and R has Q(m) property, then 
the ring R in Corollary 5.3 is commutative by Theorem 5.1 for m = 1 and 
by Theorem 5.2 for m > 1. 

6. Counterexamples 

Example 6.1. Let J 7 be a field. Then the non-commutative ring R = 

and satisfies the polynomial identity [a;,y]a; = 0 (resp. x[x,y] = 0) for all 
x,y E R. Further, if m = 0 and n > 0, then Theorem 5.1 need not be true 
for s-unital ring. 

The following example shows that the hypothesis of R to be a right 

s-unital, a left s-unital or the existence of unity 1 in R is not superfluous 
in Theorems 4.1, 5.1 and 5.2. 

Example 6.2. Let 

be elements of the ring of all 3 x 3 matrices over Z 2 the ring of integers 
mod 2. I f R is the subring generated by the matrices A\,B\ and Si, then 
each of the integers n > 1 and x,y E R} [xn,y] = [x,yn] holds. However R 
is not commutative. 

Remark 6.1. In Theorem 5.2, the restriction of Q(n) property is essen
tial. To do this, we consider Example 6.2 and use Dorroh construction 
(with the ring of integers mod 2) to get a ring R w i th 1. This ring R 
satisfies [œ2,y] = [#,y 2] for all x,y E R, and is not commutative (see [3, 
Remark]). 

In general, there are rings with unity satisfying the identity (1.1) or 

(1.2) which are not commutative. Now, we give an example to show that a 
multiplicative group which satisfies (1.1) need not be commutative. 

0 
0 

) has a left (resp. right) identity element 
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Example 6.3. Let G be a multiplicative group with center Z(G). Suppose 
that the group G/Z(G) is a periodical group of finite period p. Then, for 
any x G G, xp G Z(G), and thus, such a group G satisfies the identity 

(6.1) [xn,y] = [x,ym] for n = 1 a n d m = p + l . 

Therefore, if any finite group G satisfies the hypothesis of the Example 
6.3, then a group G satisfying the identity (6.1) for some given relatively 
prime positive integers m and n need not be commutative. Moreover, i f 
m = n + 1, then G is necessarily commutative (see [12, Theorem 3]). 
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