COMMUTATIVITY OF RINGS WITH CONSTRAINTS ON COMMUTATORS

Moharram A. Khan

Abstract. In this paper, we study the commutativity of a ring R satisfying the polynomial identity $x^{t}\left[x^{n}, y\right] y^{r}= \pm\left[x, y^{m}\right] y^{s}$ (resp. $x^{t}\left[x^{n}, y\right] y^{r}=$ $\pm y^{s}\left[x, y^{m}\right]$), for all $x, y \in R$, where m, n, r, s and t are some non-negative integers such that $m>0, n>0$, and $m=n$ if $n+t \neq 1$ and $m+s \neq r+1$. The main results of the present paper assert that a semiprime ring R is commutative if ($m, n, r, s, t) \neq(0,0,0,0,0)$ and commutativity of an associative ring R follows with property $Q(m)$, for $m>1, n>1$, that is for all $x, y \in R, \quad m[x, y]=0$ implies $[x, y]=0$. It is also shown that the above results are true for s-unital rings. Finally, our results generalize some of the well-known commutativity theorems for rings (see $[1,2,5,10,12$, 15]).

AMS Subject Classifications (1991) : 16U80
Keywords and phrases : Commutativity theorems, polynomial identities, torsion-free rings, s-unital rings, zero-divisors.

1. Introduction

Throughout, R will be an associative ring (may be without unity 1), $Z(R)$ the center of $R, C(R)$ the commutator ideal of $R, D(R)$ the set of all zero-divisors of R and $N(R)$ the set of all nilpotent elements of R. For a ring R we denote by $R^{o p p}$ the opposite ring of R, that is, the ring with the same elements and addition as R, but with opposite multiplication ' 0 ' defined by $x 0 y=y x$. We will omit the sign ' 0 ' of the opposite multiplication. For any $x, y \in R,[x, y]=x y-y x$. By $G F(q)$ we mean the Galois field
(finite field) with q elements, and $(G F(q))_{2}$ the ring of all 2×2 matrices over $G F(q)$. We set $e_{11}=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right), e_{12}=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right), e_{21}=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$ and $e_{22}=\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$ in $(G F(p))_{2}$, a prime p.

In a recent paper [1], Abujabal and Peric considered s-unital (left or right s-unital) ring R in which for any pair of elements $x, y \in R$, there exist non-negative integers m, n, s, and $t, m>0$ or $n>0$ and $s \neq t$ if $m=n=1$ such that $x^{t}\left[x^{n}, y\right]= \pm\left[x, y^{m}\right] x^{s}$ or $x^{t}\left[x, y^{m}\right]= \pm x^{s}\left[x, y^{m}\right]$ for all $x, y \in R$.

The objective of this paper is to investigate the commutativity of a ring R satisfying the polynomial identity

$$
\begin{equation*}
x^{t}\left[x^{n}, y\right] y^{r}= \pm\left[x, y^{m}\right] y^{s} \tag{1.1}
\end{equation*}
$$

or

$$
\begin{equation*}
x^{t}\left[x^{n}, y\right] y^{r}= \pm y^{s}\left[x, y^{m}\right] \tag{1.2}
\end{equation*}
$$

for some given non-negative integers m, n, r, s and t.
Remark 1.1. In the statement of (1.1) and (1.2), we consider the \pm sign same for all $x, y \in R$; each of (1.1) and (1.2) represents two different identities. But if one takes the \pm sign varying with x and y, then (1.1) and (1.2) are not identities (see [10, 14]).

2. Preliminary results

Definition 2.1. A ring R is called right (resp. left) s-unital if $x \in x R$ (resp. $x \in R x$) for each $x \in R$. Further R is called s-unital if it is both right as well as left s - unital, that is, $x \in x R \cup R x$ for each $x \in R$.

Definition 2.2. If R is an s-unital (resp. a right s-unital or a left s-unital) ring, then for any finite subset F of R, there exists an element $e \in R$ such that $x e=e x=x$ (resp. $x e=x$ or $e x=x$) for all $x \in F$. Such an element e is called the pseudo (resp. pseudo right or pseudo left) identity of F in R.

Definition 2.3. For a ring R and a positive integer n, we say that R has the property $Q(n)$ if all commutators in R are n-torsion free, that is, if $n[x, y]=0$ implies $[x, y]=0$ for all $x, y \in R$.

Remark 2.1. Clearly, every n-torsion free ring R has the property $Q(n)$ and every ring R has the property $Q(1)$. If a ring R has the property $Q(n)$, then R has the property $Q(m)$ for any factors m of n.

In the proof of our results, we need the following known results.

Lemma 2.1 [8]. Let x and y be elements in a ring R. If $[x,[x, y]]=0$, then $\left[x^{k}, y\right]=k x^{k-1}[x, y]$, for any positive integer k.

Lemma 2.2 [4]. Let R be a ring with 1 , and let x and y be elements of R. If $d x^{m}[x, y]=0$ and $d(x+1)^{m}[x, y]=0$, for some integers $m \geq 1$ and $d \geq 1$, then necessarily $d[x, y]=0$.

Lemma 2.3 [9]. Let f be a polynomial in n non- commuting indeterminates $x_{1}, x_{2}, x_{3}, \ldots ., x_{n}$ with integer coefficients. Then the following statements are equivalent:
(i) For any ring R satisfying the polynomial identity $f=0, C(R)$ is nil.
(ii) For every prime $p,\left(G(F(p))_{2}\right.$ fails to satisfy $f=0$.
(iii) Every semiprime ring satisfying $f=0$ is commutative.

Lemma 2.4 [13]. Let R be a ring with unity 1 , and let d and m be positive integers. If $\left(1-y^{m}\right) x=0$, then $\left(1-y^{d m}\right) x=0$ for all $x, y \in R$.

Lemma 2.5 [5]. Let R be a ring, and let $n>1$ be a fixed integer. If $x^{n}-x \in Z(R)$ for each $x \in R$, then R is commutative.

Lemma 2.6 [15]. Let R be right (resp. left) s-unital ring. If for each pair of elements $x, y \in R$, there exists a positive integer $k=k(x, y)$ and an element $e=e(x, y) \in R$ such that $e x^{k}=x^{k}$ and $e y^{k}=y^{k}\left(\right.$ resp. $x^{k} e=x^{k}$ and $y^{k} e=y^{k}$), then R is an s-unital.

3. A commutativity theorem for semiprime rings

Theorem 3.1. Let m, n, r, s and t be fixed non-negative integers such that $(m, n, r, s, t) \neq(0,0,0,0,0)$. Let R be a semiprime ring satisfying the polynomial identity (1.1) (resp. (1.2)). Then R is commutative.

Proof. Let R satisfy (1.1). But $x=e_{11}$ and $y=e_{12} \in(G F(p))_{2}$ for a prime p, fail to satisfy (1.1). By Lemma 2.3, R is commutative.

If R satisfies (1.2), then $x=e_{22}$ and $y=e_{12} \in(G F(p))_{2}$ for a prime p, fail to satisfy (1.2). Hence R is commutative by Lemma 2.3.

Remark 3.1. Since there are non-commutative rings with $R^{2} \subseteq Z(R)$ neither of the conditions (1.1) and (1.2) guarantees the commutativity in arbitrary rings.

One might ask a natural question: What additional conditions are needed to ensure the commutativity for arbitrary rings which satisfy (1.1) or (1.2)? To investigate the commutativity of such a ring R, we need an extra condition on R, which is given in Definition 2.3.

4. Commutativity theorems for rings with unity 1

Theorem 4.1. Let R be a ring with unity 1 satisfying the polynomial identity (1.1) (resp. (1.2)) for some given non-negative integers $m>0, n>$ $0, r, s$ and t such that $n+t>1$. Moreover, if $n+t>1$ (resp. $m+s>1$ for $r=0$), and R has $Q(n)$ property for $m>1, n>1$ and $Q(t+1)$ property for $n=1, t>0$, then R is commutative.

We shall prove here the following results called steps.

Step 4.1. Let R be a ring with unity 1 satisfying the polynomial identity (1.1) (resp. (1.2)) for some given non-negative integers $m>0, n>0, r, s$ and t such that $n+t>1$ and R has $Q(n)$ property for $m>1, n>1$. Then $N(R) \subseteq Z(R)$.

Proof. Let a be an arbitrary element in $N(R)$. Then there exists a positive integer p such that

$$
\begin{equation*}
a^{k} \in Z(R) \text { for all integers } k \geq p, p \text { minimal. } \tag{4.1}
\end{equation*}
$$

If $p=1$, then $a \in Z(R)$. Let $p>1$ and put $b=a^{p-1}$. By (4.1) we have

$$
\begin{equation*}
b^{k} \in Z(R) \text { and } b^{k}[x, b]=[x, b] b^{k}=0 \text { for all } x \in R \text { and } k>1 \tag{4.2}
\end{equation*}
$$

Replacing x by b in (1.1) (resp. (1.2)), we get $b^{t}\left[b^{n}, y\right] y^{r}= \pm\left[b, y^{m}\right] y^{s}$ (resp. $b^{t}\left[b^{n}, y\right] y^{r}= \pm y^{s}\left[b, y^{m}\right]$) for all $y \in R$.

Let $n+t>1$. Then three cases arise, that is $n>1, t>1$ or $n=t=1$. In the first two cases using (4.2), we get

$$
\begin{equation*}
\left[b, y^{m}\right] y^{s}=0\left(\text { resp. } y^{s}\left[b, y^{m}\right]=0\right) \tag{4.3}
\end{equation*}
$$

Let $m=1$ in (4.3). Then we have

$$
\begin{equation*}
[b, y] y^{s}=0\left(\operatorname{resp} . y^{s}[b, y]=0\right) \tag{4.4}
\end{equation*}
$$

Replacing y by $y+1$ in (4.4) and using Lemma 2.2 , we obtain $[b, y]=0$ for all $y \in R$, that is $a^{p-1} \in Z(R)$, a contradiction.

Let $m>1$. Replace x by $1+x$ in (1.1)(resp. (1.2)), by (4.2), and the above two identities obtained from (1.1) (resp. (1.2)) for $x=b$, we get

$$
n[b, y] y^{r}=0 \text { for all } y \in R .
$$

Since $n>1$, an application of the property $Q(n)$, yields

$$
[b, y] y^{r}=0, \text { for all } y \in R
$$

Replacing y by $y+1$ in the last identity and using Lemma 2.2 , we get

$$
[b, y]=0, \quad \text { a contradiction } .
$$

Finally, let $n=t=1$ in (1.1) (resp. (1.2)).
Replacing x by $1+x$, in (1.1) (resp. (1.2)), and using (1.1) (resp. (1.2)), we get

$$
(1+x)[x, y] y^{r}=x[x, y] y^{r}
$$

This implies that

$$
[x, y] y^{r}=0 \text { for all } x, y \in R
$$

Replacing y by $y+1$ in the last identity and using Lemma 2.2, we get $[x, y]=0$ for all $x, y \in R$, that is, $N(R) \subseteq Z(R)$.

Step 4.2. Let R be a ring satisfying the polynomial identity (1.1) (resp. (1.2)) for some given non-negative integers $m>0, n>0, r, s$ and t such that $n+t>1$ (resp. $(n+t>1$ for $s=0$ or $m+s>1)$. Then the commutator ideal $C(R)$ is nil, i.e. $C(R) \subseteq N(R)$.

Proof. Let $n+t>1$. Then the elments $x=e_{12}$ and $y=e_{11}$ in $(G F(p))_{2}$ show that the ring $(G F(p))_{2}$ fails to satisfy (1.1), and also (1.2) for $s=0$.

If $s \geq 1$, then the elements $x=e_{11}, y=e_{11}+e_{12}$ in $(G F(p))_{2}$ fail to satisfy (1.2).

Let $m+s>1$. Then the elments $x=e_{11}$ and $y=e_{12}$ in $(G F(p))_{2}$ show that the ring $(G F(p))_{2}$ fails to satisfy (1.2).

Hence, by Lemma $2.3, C(R) \subseteq N(R)$.

Remark 4.1. From the Steps 4.1 and 4.2, for the ring R, we get

$$
\begin{equation*}
C(R) \subseteq N(R) \subseteq Z(R) \tag{4.5}
\end{equation*}
$$

By (4.5), R satisfies $[x,[x, y]]=0$ for all $x, y \in R$, and from Lemma 2.1 the identities (1.1) and (1.2) are equivalent and can be written in the form

$$
\begin{equation*}
n x^{n+t-1}[x, y] y^{r}= \pm m y^{m+s-1}[x, y] \tag{4.6}
\end{equation*}
$$

Step 4.3. Let R be a ring with unity 1 satisfying the identity (4.6) for some given non-negative integers $m>0, n>0, r, s$ and t. For any $x, y \in$ $R, n[x, y]=0$ if and only if $m[x, y]=0$. Moreover, R has $Q(n)$ property if and only if R has $Q(m)$ property. Let m, n be relatively prime integers. Then R has both $Q(m)$ and $Q(n)$ properties.

Proof. By hypothesis, $n[x, y]=0$ for some $x, y \in R$. Then we have

$$
\begin{array}{lll}
n \alpha^{n+t-1}[\alpha, \beta] \beta^{r}=0 & \text { for } & \alpha \in\{x, 1+x\} \\
& \text { and } & \beta \in\{y, 1+y\} .
\end{array}
$$

In view of (4.6), we have

$$
\begin{array}{lll}
m \beta^{m+s-1}[\alpha, \beta]=0 . & \text { for } & \alpha \in\{x, 1+x\} \\
& \text { and } & \beta \in\{y, 1+y\}
\end{array}
$$

This implies that

$$
m y^{m+s-1}[x, y]=0 \text { and } m(y+1)^{m+s-1}[x, y]=0
$$

Using Lemma 2.2, we get

$$
m[x, y]=0
$$

Similary, if $m[x, y]=0$, then $n[x, y]=0$.
Let R be a ring with $Q(m)$ property. If $n[x, y]=0$, for some $x, y \in R$, then $m[x, y]=0$. By $Q(m)$ property, $[x, y]=0$. Thus, R has also $Q(n)$ property.

Similarly, one can prove that if R has $Q(n)$ property, then R has also $Q(m)$ property.

Let m, n be relatively prime integers. Suppose that $m[x, y]=0$, for some $x, y \in R$. Then $n[x, y]=0$. Since m and n are relatively prime, $[x, y]=0$. Hence R has $Q(m)$ property and also $Q(n)$ property.

Proof of Theorem 4.1 . Keeping the Remark 4.1 in mind, it suffices to assume that the ring R satisfies the identity (1.1). Replacing x by $p x$ in (1.1), we get

$$
p^{n+t} x^{t}\left[x^{n}, y\right] y^{r}= \pm p\left[x, y^{m}\right] y^{s} \text { for all } x, y \in R
$$

Combining this identity with (1.1), we get

$$
\left(p^{n+t}-p\right)\left[x, y^{m}\right] y^{s}=0
$$

In view of Lemma 2.1, one gets

$$
\left(p^{n+t}-p\right) m[x, y] y^{m+s-1}=0 \text { for all } x, y \in R
$$

Replace y by $y+1$ in the last expression and use Lemma 2.2 , we get

$$
\left(p^{n+t}-p\right) m[x, y]=0
$$

Let $d=m\left(p^{n+t}-p\right)>1$. Then $d[x, y]=0$, for all $x, y \in R$. Hence $\left[x^{d}, y\right]=d x^{d-1}[x, y]=0$, that is,

$$
\begin{equation*}
x^{d} \in Z(R) \text { for all } x \in R \text { and } d=\left(p^{n+t}-p\right) m>1 \tag{4.7}
\end{equation*}
$$

Let $n>1$. Replacing x by x^{n} in (1.1), we get

$$
\begin{equation*}
x^{n t}\left[\left(x^{n}\right)^{n}, y\right] y^{r}= \pm\left[x^{n}, y^{m}\right] y^{s} \tag{4.8}
\end{equation*}
$$

Now, we have

$$
\begin{aligned}
x^{n t}\left[\left(x^{n}\right)^{n}, y\right] y^{r} & =n x^{n t+n(n-1)}\left[x^{n}, y\right] y^{r} . \\
& =n x^{(n-1)(n+t)}\left(x^{t}\left[x^{n}, y\right] y^{r}\right) \\
& = \pm n x^{(n-1)(n+t)}\left[x, y^{m}\right] y^{s} \\
{\left[x^{n}, y^{m}\right] y^{s} } & =n x^{n-1}\left[x, y^{m}\right] y^{s} .
\end{aligned}
$$

From the above, we have

$$
\begin{gathered}
n x^{n-1}\left[x, y^{m}\right] y^{s}-n x^{(n-1)(n+t)}\left[x, y^{m}\right] y^{s}=0 \\
n x^{n-1}\left(1-x^{(n-1)(n+t-1)}\right)\left[x, y^{m}\right] y^{s}=0
\end{gathered}
$$

In view of Lemma 2.4, we get

$$
\begin{equation*}
n x^{n-1}\left(1-x^{d(n-1)(n+t-1)}\right)\left[x, y^{m}\right] y^{s}=0 \tag{4.9}
\end{equation*}
$$

Clearly one can prove that the polynomial identity (1.1) implies that

$$
\begin{equation*}
x^{t^{\prime}}\left[x^{n^{2}}, y\right] y^{r^{\prime}}=\left[x, y^{m^{2}}\right] y^{s^{\prime}} \tag{4.10}
\end{equation*}
$$

for all $x, y \in R$ and $r^{\prime}=m r+r, s^{\prime}=m s+s$ and $t^{\prime}=n t+t$.
It is noticed that the ring R is isomorphic to a subdirect sum of subdirectly irreducible rings $R_{i}, i \in I$. As homomorphic image of R, each of the rings R_{i} has a unity 1 and satisfies all the identities satisfied by R. But R_{i} does not necessarily satisfy $Q(n)$ for $m>1, n>1$ (resp. $Q(t+1)$ for $n=1, t>0)$.

Now, consider the ring R_{i} for some fixed index $i \in I$. If H is the intersection of all non-zero ideals of R_{i}, then $H \neq\{0\}$ and $H c=\{0\}$ for all central zero divisors c of R_{i}.

If u is any zero divisor of R_{i}, then (4.9) can be written as

$$
n u^{n-1}\left(1-u^{d(n-1)(n+t-1)}\right)\left[u, y^{m}\right] y^{s}=0 .
$$

Let $n u^{n-1}\left[u, y^{m}\right] y^{s} \neq 0$. Then $1-u^{d(n-1)(n+t-1)}$ will be a central zero divisor c of $R_{i}, i \in I$. We have

$$
\{0\}=H\left(1-u^{d(n-1)(n+t-1)}\right)=H-H c=H
$$

This gives a contradiction because $H \neq\{0\}$. Thus $n u^{n-1}\left[u, y^{m}\right] y^{s}=0$, and by Lemma 2.1, we obtain

$$
m n u^{n-1}[u, y] y^{m+s-1}=0 \text { for all } y \in R_{i} \text { and } u \in D\left(R_{i}\right)
$$

Replacing y by $y+1$ in the last expression and using Lemma 2.2, we get

$$
\begin{equation*}
m n u^{n-1}[u, y]=0 \text { for all } y \in R_{i} \text { and } u \in D\left(R_{i}\right) \tag{4.11}
\end{equation*}
$$

Combining (4.10) and (4.11), we get

$$
u^{t^{\prime}}\left[u^{n^{2}}, y\right] y^{r^{\prime}}=0 \text { for all } y \in R_{i} \text { and } u \in D\left(R_{i}\right)
$$

Replacing y by $y+1$ in the last expression and using Lemma 2.2, we get

$$
u^{t^{t^{\prime}}}\left[u^{n^{2}}, y\right]=0 \text { for all } y \in R_{i} \text { and } u \in D\left(R_{i}\right)
$$

In view of (4.10), Lemmas 2.1 and 2.2 , we get

$$
m^{2}[u, y]=0 \text { for all } y \in R_{i}, u \in D\left(R_{i}\right)
$$

This implies that $\left[u, y^{m^{2}}\right]=m^{2} y^{m^{2}-1}[u, y]=0$ for all $y \in R_{i}$ and $u \in D\left(R_{i}\right)$. Hence

$$
\begin{equation*}
\left[u, y^{m^{2}}\right]=0 \text { for all } y \in R_{i}, u \in D\left(R_{i}\right) \tag{4.12}
\end{equation*}
$$

Let $z \in Z\left(R_{i}\right)$, center of R_{i}. Replacing x by $z x$ in (1.1), we get

$$
\begin{aligned}
& z^{n+t} x^{t}\left[x^{n}, y\right] y^{r}=z\left(\pm\left[x, y^{m}\right] y^{s}\right) \\
&=z x^{t}\left[x^{n}, y\right] y^{r} . \\
&\left(z^{n+t}-z\right) x^{t}\left[x^{n}, y\right] y^{r}=0 .
\end{aligned}
$$

Replacing y by $y+1$ and using Lemma 2.2, we get

$$
\left(z^{n+t}-z\right) x^{t}\left[x^{n}, y\right]=0
$$

By Lemma 2.1, we have

$$
n\left(z^{n+t}-z\right) x^{n+t-1}[x, y]=0
$$

Replacing x by $x+1$ and using Lemma 2.2, we get $n\left(z^{n+t}-z\right)[x, y]=0$. Thus, by Lemma 2.1, we get
$\left(z^{n+t}-z\right)\left[x^{n}, y\right]=n\left(z^{n+t}-z\right) x^{n-1}[x, y]=0$ for all $x, y \in R_{i}$ and $z \in Z\left(R_{i}\right)$.

$$
\begin{equation*}
\left(z^{n+t}-z\right)\left[x,^{n} y\right]=0 \text { for all } x, y \in R_{i} \text { and } z \in Z\left(R_{i}\right) \tag{4.13}
\end{equation*}
$$

Clearly, from (4.7) and (4.13), we find

$$
\begin{equation*}
\left(y^{d(n+t)}-y^{d}\right)\left[x^{n}, y\right]=0 \text { for all } x \text { and } y \text { in } R_{i} . \tag{4.14}
\end{equation*}
$$

Now, let $y \in R_{i}$. If $\left[x^{m^{2} n}, y\right]=0$, then one can write

$$
\left[x^{m^{2} n}, y^{q}-y\right]=0 \text { for all positive integers } q>1
$$

Let $\left[x^{m^{2} n}, y\right] \neq 0$. Then $\left[x^{n}, y\right] \neq 0$. Since $\left[x^{n}, y\right] \neq 0$, by $(4.12), y^{d(n+t)}-$ $y^{d} \in D\left(R_{i}\right)$, so $y^{d(n+t-1)+1}-y$ is also in $D\left(R_{i}\right)$. In view of (4.12), we have (4.15)
$\left[x^{m^{2} n}, y^{p}-y\right]=0$ for all x, y in R_{i} and $p=d(n+t-1)+1>1$.
Since $R_{i}, i \in I$ satisfies (4.15), the original ring R also satisfies (4.15). Therefore, R has $Q(n)$ property, and by Step 4.3, also $Q(m)$ property. Combining (4.14) along with Lemmas 2.1 and 2.2 , we finally get $\left[x, y^{p}-y\right]=$ 0 for all $x, y \in R$ and some positive integer $p>1$. Hence R is commutative by Lemma 2.5 .

If $n=1, t>0$, then the identity (1.1), by Lemma 2.1, gives

$$
\left[x^{t+1}, y\right] y^{r+m t}= \pm\left[y^{m(t+1)}, x\right] y^{s}
$$

By an application of the $Q(t+1)$ property, R is commutative.

5. Commutativity theorems for s-unital rings

Theorem 5.1. Let R be a right (resp. left) s-unital ring satisfying the hypothesis of Theorem 4.1. Then R is commutative.
We begin with

Step 5.1. Let R be a right (resp. left) s-unital ring satisfying the polynomial identity (1.1) (resp. (1.2)) for some non-negative integers $m>0, n>$ $0, r, s$ and t such that $n+t>1$ (resp. $m+s>1$ for $r=0$). Then R is s-unital.

Proof. Let R be a right (resp. left) s-unital ring, x, y arbitrary elements of R, and e an element of R such that $x e=x$ and $y e=y$ (resp. $e x=$ x and $e y=y$).

Let R be a right s-unital ring satisfying (1.1) for some non-negative integers $m>0, n>0, r, s$ and t such that $n+t>1$. Replacing y by e in (1.1), we get

$$
\begin{equation*}
x^{n+t} e^{r+1} \mp\left(x-e^{m} x\right) . \tag{5.1}
\end{equation*}
$$

If $n+t>1$ or $t>1$, then (5.1) gives $x=e^{m} x$, i.e., s-unital ring.
Let $t=0$. Then $n>1$, and hence (5.1) becomes

$$
x=e^{m} x \pm x^{n} \mp e x^{n}
$$

This implies that R is s-unital ring.
Let R be a left s-unital ring satisfying (1.2) for some given non-negative integers $m>0, n>0, r, s$ and t such that $m+s>1$ for $r=0$. Replace x by e in (1.2) one gets

$$
\begin{equation*}
y^{r+1}-y e^{n} y^{r} \mp\left(y^{m+s}-y^{m+s} e\right) \tag{5.2}
\end{equation*}
$$

If $r>0$, then (5.2) gives $y^{m+s}=y^{m+s} e$.
Similarly, for $r>0$ one gets $x^{m+s}=x^{m+s} e$ when $m+s>0$. By Lemma $2.6, R$ is s-unital ring.

Proof of Theorem 5.1. In view of Step $5.1 R$ is s-unital and, by the Proposition 1 of [7], we may assume that R has unity 1 . Hence R is commutative by Theorem 4.1.

In particular, for $r=0$, we have the following:

Theorem 5.2. Let R be a right (resp. left) s-unital ring satisfying (1.1) (resp. (1.2)) for some given non-negative integers $m>0, n>0, r, s$ and t such that $n+t>1$ (resp. $m+s>1$). If $r=0, m+s>0$ and R has $Q(m)$ property for $m>1, n>1$, and $Q(s+1)$ property for $m=1, s>0$, then R is commutative.

Proof If $r=0$ and R satisfies (1.1) (resp. (1.2)), then the ring R itself (resp. the opposite ring $R^{o p p}$ of R) satisfies the polynomial identity

$$
\left.\left[y^{m}, x\right] y^{s}= \pm x^{t}\left[y, x^{n}\right] \text { (resp. }\left[y^{m}, x\right] y^{s}= \pm\left[y, x^{n}\right] y^{s}\right)
$$

Hence, the ring R in Theorem 5.2 is commutative by Theorem 5.1.

Theorem 5.3. Let R be a right (resp. left) s-unital ring satisfying the polynomial identity (1.1) (resp. (1.2)) for some given non-negative integers $m>0, n>0, r, s$ and t such that $n+t>1$ (resp. $m+s>1$). If $r=0$, and m, n are relatively prime integers, then R in commutative.

Proof. In view of Step 5.1, R is s-unital. Now, we may assume that R is a ring with unity 1 . From Theorems 5.1 and 5.2 , it is enough to prove that R has the properties $Q(m)$ and $Q(n)$.
Taking b as in the proof of Step 4.1 and $r=0$, we have

$$
\begin{equation*}
n[b, y]=0 \text { for all } y \in R . \tag{5.3}
\end{equation*}
$$

Let $r=0$. Using the same arguments as above, we get

$$
\begin{equation*}
m[x, b]=0 \text { for all } x \in R \tag{5.4}
\end{equation*}
$$

Since m, n are relatively prime integers, by (5.3) and (5.4) we get $[x, b]=0$ for all $x \in R$, that is, $b \in Z(R)$. Hence $N(R) \subseteq Z(R)$ and by Step 4.2, R satisfies (4.6) and also (4.7). Hence, in view of Step 4.3, $m[x, y]=0$ is equivalent to $n[x, y]=0$ for all $x, y \in R$. Clearly, m, n are relatively prime, R has both $Q(m)$ and $Q(n)$ properties.

The following results are immediate consequences of the above results.

Corollary 5.1. Let $m \geq n \geq 1$ be fixed integers with $m, n>1$ and let R be a right (resp. left) s-unital ring satisfying the polynomial identity [$x y, x^{n} \pm y^{m}$] for all $x, y \in R$. Then R is commutative if R satisfies one of the following conditions:
(i) R has the property $Q(m)$;
(ii) R has the property $Q(n)$;
(iii) m, n are relatively prime.

Proof. By hypothesis, we have

$$
\begin{equation*}
x\left[x^{n}, y\right]= \pm\left[x, y^{m}\right] y . \tag{5.4}
\end{equation*}
$$

If R is a right s-unital ring, then Corollary 5.1 follows from Theorems 5.1 and 5.2. Clearly, the identity (5.4) is s-unital when R is a left s-unital ring.

Finally, if $m=n=1$, then the Corollary 5.1 shows that a right (resp. left) s-unital ring R having the product of two elements with their sum (or difference) is necessarily commutative.

Corollary 5.2. [2, Theorem] Let m, n, r and t be fixed non-negative integers such that $m>0$ or $n>0$, and $r=0$ or $t>0$ if $m=n=1$. If R is a ring which satisfies the polynomail identity $x^{t}\left[x^{n}, y\right] y^{r}= \pm\left[x, y^{m}\right]$, then R is commutative provided that one of the following additional conditions is fulfilled:
(i) $m=0$, and R is an s-unital (resp. a right s-unital for $t=0$, or a left s-unital for $r=0$) ring with the property $Q(n)$;
(ii) $n=0$, and R is a right or left s-unital ring with the property $Q(m)$;
(iii) $m=1, n \geq 1$, or $m>1, n=1$ and $r=t=0$;
(iv) $m>1, n>1$, and R is a right or left s-unital ring with the property $Q(m)$;
(v) $m>1, n=1, r+t>0$, and R is a right or left s-unital ring with the property $Q(m \pm 1)$ for $t=0)$.

Corollary 5.3 [12, Theorem 2]. Let m, t be fixed non-negative integers. Suppose that R satisfies the polynomial identity $x^{t}[x, y]=\left[x, y^{m}\right]$.
(i) If R is a left s-unital, then R is commutative except for $(m, t)=(1,0)$.
(ii) If R is right s-unital, then R is commutative except for $m=1, t=0$ and also $m=0, t>0$.

Corollary 5.4 [1, Theorem 1]. Let $m \geq n \geq 1$ be fixed integers with $m, n>1$ and let R be a left (resp. a right) s-unital ring satisfying the polynomial identity $x\left[x^{n}, y\right]=\left[y^{m}, x\right] y$ for all $x, y \in R$. Then R is commutative.

Remark 5.1. In Corollary 5.3, if $n>1$ and R has $Q(m)$ property, then the ring R in Corollary 5.3 is commutative by Theorem 5.1 for $m=1$ and by Theorem 5.2 for $m>1$.

6. Counterexamples

Example 6.1. Let F be a field. Then the non-commutative ring $R=$ $\left(\begin{array}{cc}0 & F \\ 0 & F\end{array}\right)$ (resp. $R_{1}=\left(\begin{array}{cc}F & 0 \\ F & 0\end{array}\right)$) has a left (resp. right) identity element and satisfies the polynomial identity $[x, y] x=0$ (resp. $x[x, y]=0$) for all $x, y \in R$. Further, if $m=0$ and $n \geq 0$, then Theorem 5.1 need not be true for s-unital ring.

The following example shows that the hypothesis of R to be a right s-unital, a left s-unital or the existence of unity 1 in R is not superfluous in Theorems 4.1, 5.1 and 5.2.

Example 6.2. Let

$$
A_{1}=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), B_{1}\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), S_{1}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

be elements of the ring of all 3×3 matrices over Z_{2} the ring of integers $\bmod 2$. If R is the subring generated by the matrices A_{1}, B_{1} and S_{1}, then each of the integers $n \geq 1$ and $x, y \in R,\left[x^{n}, y\right]=\left[x, y^{n}\right]$ holds. However R is not commutative.

Remark 6.1. In Theorem 5.2, the restriction of $Q(n)$ property is essential. To do this, we consider Example 6.2 and use Dorroh construction (with the ring of integers mod 2) to get a ring R with 1 . This ring R satisfies $\left[x^{2}, y\right]=\left[x, y^{2}\right]$ for all $x, y \in R$, and is not commutative (see $[3$, Remark]).

In general, there are rings with unity satisfying the identity (1.1) or (1.2) which are not commutative. Now, we give an example to show that a multiplicative group which satisfies (1.1) need not be commutative.

Example 6.3. Let G be a multiplicative group with center $Z(G)$. Suppose that the group $G / Z(G)$ is a periodical group of finite period p. Then, for any $x \in G, x^{p} \in Z(G)$, and thus, such a group G satisfies the identity

$$
\begin{equation*}
\left[x^{n}, y\right]=\left[x, y^{m}\right] \text { for } n=1 \text { and } m=p+1 \tag{6.1}
\end{equation*}
$$

Therefore, if any finite group G satisfies the hypothesis of the Example 6.3 , then a group G satisfying the identity (6.1) for some given relatively prime positive integers m and n need not be commutative. Moreover, if $m=n+1$, then G is necessarily commutative (see [12, Theorem 3]).

Acknowledgements

This paper was presented and written when the author was a visiting Mathematician at the T.I.F.R. Mumbai, India. I am greatly indebted to the referee for his valuable comments and helpful suggestions and also Professors R. Parimala and S.G. Dani, Dean Faculty of Mathematics for the hospitality.

References

1. ABUJABAL, H. A. S. and PERIC, V., Commutativity of s-unital ring through a Streb result, Rad. Mat. 7 (1991), 73 - 92.
2. ABUJABAL, H. A. S. and PERIC, V., Commutativity theorems for s-unital ring, Mathematica Pannonica 4/2 (1993), 181-190.
3. BELL, H. E., On the power map and ring commutativity, Canad. Math. Bull. 21 (1978) 399-404
4. BELL, H. E., The identity $(x y)^{n}=x^{n} y^{n}$: does it buy commutativity?, Math. Mag. 55 (1982), 165-170.
5. HERSTEIN, I. N., A generalization of a theorem of Jacobson, Amer. J. Math. 78 (1951), $756-762$.
6. HERSTEIN, I. N., Topics in ring theory, Chicago University Press, Chicago (1989).
7. HIRANO, Y., KOBAYASHI, Y., and TOMINAGA, H., Some polynomial identities and commutativity of s-unital rings, Math. J. Okayama Univ. 24 (1982), 7-13.
8. JACOBSON, N., Structure of rings, Amer. Math. Soc. Colloq. Publ. (1964).
9. KEZLAN, T. P., A note on commutativity of semiprime PI-rings, Math. Japon. 27 (1982), 267-268.
10. KHAN, M. A., Commutativity theorems for rings with constraints on commutators, J. Indian Math. Soc. 66 (1999), 113-124.
11. KOMATSU, H., A commutativity theorem for rings, Math. J. Okayama Univ. 26 (1984), 109-111.
12. PSOMOPOULES, E., Commutativity theorems for rings and groups with constraints on commutators, Internat J. Math. and Math. Sci. 7 (1984), 513-517
13. QUADRI, M. A. and KHAN, M. A., A commutativity theorem for left s-unital rings, Bull. Inst. Math. Acad. Sinica 15 (1987), 323 327.
14. STREB, W., Zur struktur nichtkommutativer ringe, Math. J. Okayama Univ. 31 (1989), 135-140.
15. TOMINAGA, H., and YAQUB, A., A commutativity theorem for one sided s-unital ring, Math. J. Okayama Univ. 26 (1984), 125-128.

Department of Mathematics
Faculty of Science, King Abdul Aziz University P. O. Box 30356, Jeddah - 21477, Saudi- Arabia

E-mail: nassb@hotmail.com

