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An Investigation on P-Adic U Numbers'

Hamza MENKEN

ABSTRACT : In this paper, firstly we show that there are infinitely many p-adic numbers y

such that y eU, and F(y)eU, where ke N, 1<i<k and F,(x) are non-constant

polynomials with integer coefficients. Secondly, we prove that the finite linear combination of
p—adic algebraic numbers and semi-strong p-adic U-numbers belong to A U, Finally, we

prove that if 7, is a p—adic U-number and 7, is a semi-strong p—adic U-number, then both

v, t7, and 7,7, numbers belong to A WU . Moreover, we remark that if 7, is taken as a

p—adic U-number the last statement fails to be true.

Introduction

Mahler [10] divided the complex numbers into four classes as A, S, T, U.
Later, Koksma [7] set up another classification of complex numbers. He divided
them into four classes as A*, S*, T*, U*, Wirsing [14] has shown that these two
classifications are equivalent. '

Let p be a fixed prime number and | lp denotes the p-adic valuation of

the set of rational numbers Q. Furthermore let Q ’ denote all the p-adic
numbers over Q.

Mahler [11] had a classification of p-adic numbers as follows: Let P(x)
be a polynomial with integral coefficients and H (P) be the height of P(x).
Suppose that H,n € N and & € O, . Mahler lets

" This paper is based on the author’s PhD’s thesis accepted by the Institute of Science of Istanbul University
in 2000. | am grateful to Prof. Dr. Kamil ALNIACIK for his valuable help and encouragement at all stages ol
this work.
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w, (H,E) = min{|P(&)]: deg P <n,H(P)< H,P(£) #0}.

It is clear that 0 < w (&, H) <1, since, if P(x) =1, then IP(a)'p =1, Next
Mabhler lets

w, (5) = llmsupw and W(g) = limsup W, (5) '
n

H o IOgH n—w
It is clear that w, (&) is nondecreasing as function of n. One has,
0w, ()< and 0<w(£)<oo. If w,(£)=0c0 for some integer n, let

H(E) be the smallest such integer; if w,(£) <oo for every n, let (&) =00,
Mahler calls the number &£ a

A —number if w(£)=0 and p(&) =,
S — number if 0 < w(&) <o and p(&) =0,
T — number if w(&) =0 and (&)=,
U — number if w(&) =c and (&) <o,

On the other hand, Schlickewei [14] gives a classification of p-adic numbers as
follows: Let & € O, and

w:(H,é)=min{|§—al:dega£n,H(a)SH,§¢a}

where H and n are natural numbers. Let

&
~log(Hw, (H, _
why (£) = limsup og(Hw, ( f)), and w* (&) = limsup
H—w log H n—>00

Wy (£)
mete

It is clear that the inequalitiesO < w *, (§) <00 and 0 < w* (&) <o hold. If
for any indexw*, (£) =0, then p*(&) is defined as the smallest of them;
otherwise, u*(&)=o. So x*(£) is uniquely determined and neither
L1 FE(E) nor w*(E) can be finite. There are the following four possibilities for
& . The p-adic number & is called

112




A* —number if w*(£)=0 and p*() =
S#*—number if 0 < w* (&) <o and pu*(£)=w
T#*~ number if w*(£) =00 and pu*(£)=w
U~ number if w*(&) =00 and p*(£) <.

& is called a U*- number of degree m (m2>1) if 4*(&)=m. The set of p-

o0
adic U*- numbers of degree m is denoted by U :l. Thus U*= JU *,

m=l

holds.

n

The p-adic set UTis called p-adic Liouville numbers. Long [9] proved that
U

m =U *,,. We give some definition and lemmas.

Definition 1. Let y € 0, and m € N . The number y is called p-adic

U,, number if for every w > 0, there are infinitely many algebraic numbers o
of degree m with

0< ly——alp <H(a)™"

and if there are constants C,K > 0 depending only on ¥ and m such that the
relation

o<ly-p|, <cHP™

holds for every algebraic number £ in Qp which has degree less than m.

Lemma 1. (Schlickewei) Let o and 8 are two nonconjugate algebraic
numbers of degree ¢ and k, respectively. Then, for M > max{t,k}

> ‘1
P H@M  H(pM

o= A

_ p(M—l)r~M ([/;[H)(

where ]alp = p_h, F= min{O,h} and ¢ QM

(See [13]).
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Lemma 2. (J. F. Morrison ) Let o € O p and

P(x)=ag+aix+..+a,x" € Z[x]

such that P(ar) = 0. Then,
|a[p > H(P)™! . (See. [12)).

Lemma 3. (O. S. i¢en ) Let 5., (k 2 1) be algebraic numbers
inQ, with [Q(al,...,ak) : Q]= g and let F(y,xy,..,x;) be a polynomial
with integral coefficients, whose degree in y is at least one. If 7 is an algebraic
number such that F(77,ay,...,a ) = 0, then the degree of 17 < dg and

H(p) < 32dg+U+.+l)g HgH(al)hg ...H(ak)lkg

where H (77) is the height of 7, H(e;)(i =1,...,k) is the height of @; and, H
is the maximum of absolute values of the coefficients of F, L;(i=1..,k) is the

degree of Finx; and d is the degree of F in y. ( See. [6] ).

Theorem 1. Let {ai} be sequence of algebraic numbers in Qp with

()  degaj=m; < and lim H(a;)=0 (LeZ¥)

i—>o0
1 .
(2) |a,-+1 —a,-l = —————, where [im w; =
H(ai)“’ [—o0
1
3) O<|a,-+1—ai|<——3~ for & >0.
H(ayy)

Then, lim a; €U, where m = liminf m; . (See. [4]).
[— [—>0
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Definition 2. Let y € O P If there are infinitely many p-adic algebraic

numbers {05,-} such that

(1)  dega;=m;<¢ and lim H(e;) =0 (LeZ)

[—>00
1 ,
(2) 0<|oci+1 —oci[ =———— where |im W; =
H(a;)%i i—>00
1 .
(3) 0<|(xi+1—ai|<——~—8 for some fixed & >0.
H(ay 1)
Then, the number lim o =1y €Q, is said to be an irregular semi-
i—>a
strong p-adic U-number. If lim inf m; = lim m;, ¥ is called a semi-strong
i—»o0 i—>o0
p-adic U-number. If lim inf m; = m Theorem 1 proves that y € U, .
[—>0

In this paper U ;;l denotes all semi-strong p-adic U ,, -numbers and U*
denotes all semi-strong p-adic U-numbers.

Main results of this paper are the following theorems.

Theorem 2. Let meZb and F;(x) e Z[x] where degP >1

(i =1,...,k) . Then there are infinitely many y € U, such that P,(y) e U,, for
every | <i<k.

Proof: Let « be a p-adic algebraic number of degree m and

2)

o M - a,a( ,...,a(m) denotes the conjugates of . Consider the equation

f’,-(a(")+y)=l’,-(a(s)+y) (I<r,s<mr#s). (1.1)

For fixed r, s, i, (1.1) is equivalent to some polynomial equation

c,yr +.o.tcpy+eng=0
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where the coefficients ¢ ; are p-adic algebraic numbers. Since a'” %o for

r#s, ¢; #0 and so (l.1) has only finitely many solutions in y e Qp.
Consider y = p", then there is a natural number n o such that
degP(a+p")=m (i=1,.,k) for Va>ny.

Let {w(i)} be a sequence of positive real numbers with [im w; =00.

i—oo
We define algebraic numbers ¢; and integers n; (i =1,2,...) as
degPi(a+p")=m (=1..,k), aj =a+p" (1.2)
(a) degPi(a+p"iH)=m (t=1,.,k)
) H(a)"® < p"itl (1.3)
2 .
(c) npy <Ak (ZZI)
@iy =o;+ptitt (1.4)
i+l 4. i+l 4.
From (1.2) and (1.4) we have ¢ .1 =a+ X p /. F(a;j .0, X p 7 )=0
j=1 j=1

holds for the polynomial F(y,xj,x9)=y— x| —Xx. Applying Lemma 3 we
find

i+1 .

Jj=1
Using (1.3)(c) we write

i+1 X
H( Z pﬂj ) — pﬂ] +m+pﬂi+l < (l‘_l_l)pﬂi_H < p2n'i+l
Jj=1

Since lim p" =oo, there is a natural number i;such that
i~»

pl+l >3 am H(x) 2 for Vi > i7. So, we can write
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H(ai+l)s(piz,~+l)2m+l (ViZil ). (1.5)

A combination of (1.4) and (1.5) gives us

. 1 1
I Co
i — | =p =——< (Viziyp).
I i l|p p o phisl H((Z,-+1)I/(2m+1)
Writing a & =1/(2m+1) , we obtain
1 Do
leri 11 —a,-lp < ———— (Vizip). (1.6)
H(a;y)
On the other hand, it follows from (1.3)(b) and (1.4) that
1 D
@i —a] | S (ViZzip). (1.7)

P H((Zi)w(i)

Thus, {a;} satisfies the conditions (1), (2) and (3) of Theorem 1 and so
we have lima; =y eU,,.
i—o©
Now we show that P (y)eU,, (=1..,k). Put f; =PF(a;).
Applying Taylor Formula, we have

P/(a;)
1!

2 Blay) L

Fi(aj ) = F(e;) + (@i — ;) 5

+(ajp —a;)

It is clear that P,(j)(a,-) =0 for Vj 2 M where
M > max{degP] (x),...,deg P, (x) } Thus, taking | lp of both sides we write

po PYD
- t
B -ﬂi|,, =1 -O‘i|p Pla)+. (@i =) =

Now, we can determine an upper bound for the value
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PMD ()
"oy VRN 7 ) Ul SR vt 54
Pllaj)+..+(aj —a;) M D!

p

On the other hand, it can be easily proved that there is a natural number
i, such that, |0£,-]p =|a,~+1|p for Vizi,. Thus, since !ai+1 -ail, <1,

Pt(i)(ai) <pM|”| and |— <pM (1< j<M). So, we have

14

Ip

P(M_l)(a-)
oy M1t i M|
Pla;)+..+ (o — ;) ——(M—l)! .
p
Hénce, we find that
|Bi+1 —ﬁilp =leiv1 —@; €1 (1.8)

where ¢| = pM(lth). We consider the polynomial F(y,x)=y—F(x).
Then, F(f;,a;) =0 holds. Applying Lemma 3 gives

H(ﬂl) 532m+M H(a,)mM )
Since lim H(a;) = oo, there is a natural number i3 such that i3 >i, and
i—»a0
H(e;) >32™M (i),
Hence, putting p =mM +1 we have
H(B) <H(ap)? (Viziz). (1.9);

and also using (1.9); and (1.8) in (1.6) we write
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‘] ]

= < <
s Ab"ﬂ@ﬂm‘mem”'

Since lim H(f3;) =0 there is a natural number i4 > i3 such that
i—o

H(fB)>c (Viziy).

Hence, we have

1
.y

i1 - ﬂ’lp H(p;) - oy (V2 i) (1.10)

using (1.8) and (1.9);,; in (1.6) we obtain

‘1 ¢
1Bivi = Bi, <elleirr—ey|, < <
P P H(eyy)® H(B?'P

(Vizig).

Put 8y =6/2p. Since lim H(p;)=c there is a natural number
[—>0

is 214 such that H(,B,-)51 > ¢y (Vizig). Hence, we write

|Bi1 = B, (Vizis). (L11)

<1 _ -
H(f;,1)!

{[3l }satlsfles the condition (1), (2) and (3) of Theorem 1 by (1.10) and (1 11).
Finally, we have

lim f; = B (lim &) = B() €Uy, (1 =1.k).

i—o0

~Example 1. Consider the function y” = x" where n,m e N .

If we take as y = 1", x = t"" and we consider the polynomials
b poly
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Pny=t" and Py(r)=t",

By Theorem 2, there are infinitely many numbers y €U, such that
N(y)elU,, and Py(y)eU, . Hence, there are infinitely many numbers
x,y € U, satisfying the condition y"" = x"",
Theorem 3. lLet ag,aq,...,a;, be p-adic algebraic numbers and
0-21 k p 8
Y1»-»Yk be semi-strong p-adic U-numbers. Then, the number
Y=0g+ayy +...+ogy, belongsto AUU.

Proof : From Definition 2, there are p-adic algebraic sequences

{a; } which satisfies the following properties such that jli_r)noo aS_i) =Y
fori=1,... k.

degagi) = mg.i) <( and lim H(ag.i)) = (LeZ") (2.1);

j—=o

1 1

)]
-a; = ; — < ;
p H(ag_l))wi(l) H(a‘(jl-?-l)&

Vi—a;

(2.2);

where lim w;(j) =oco and some fixed numbers &; >0 (i=1,...,k).
j—o

On the other hand, as equivalent to (2.2); we can write

1 1

)]
lo4 - — < -
H(O{S'I))wi(n H(a;lll)gi

j+1

_ay’)' _ (VI<i<k). (2.3);
p

Now, we will show that
log H(a(.’?rl)
lim —— 17 =0 (V1<i<k).
J=® log H(a(i’))
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It is given that ¢ > max{degaﬁl,

Lemma | we write

‘1 iu> ) 1
H(O‘s’ll)p IH(ag.’))” J H(Oly))w’“)
where a(i) =p " p=mi Oh} d
iyl =p ,r-mm{, an
)2

_ p(é—l)r~£(|h|+1)((2@!)4.

Hence, we find

H@" it <g@) et

So, taking logarithms of both sides of the last inequality we have

(w; (1) - Z)logH(a(’))<(£ 1)(logH(a(l) )+10gc{1)
or

(w; () =) 1°gH<“J+1>+ logci!

¢-1 logH(ag.l)) logH(ag-i)) .
Iogcl—1
Since lim w;(j)=c and lim =0 holds
joow j—>°°10gH(a('))
logH(ayll
lim —M—

j—o logH(a( ))

dega(') } Also, using (2.3); in

(2.4);
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- Let Hj be a monotone union of H(ay)) (i=1,..., k). Now, we

are in a position to prove that

. logH ;4
lim sup———— =00
j—oo logH ;

To this end, it is sufficient to find a subsequence {H in } such that

. logHj"H
lim ——~— =00
n—o log H i

logH(a))
Putting 44 (n) = — " where 1<i<k , lim g;(n)=o0
log H(a§") n—>o0

holds for Vi=1,..,, k.

For fixed ie {1,..., k }, we define subsequence H in that every
element is selected from the interval [ H (af,i) ), H (affll )] for Vne N as

in the following: Let n e N.

Case I: When H;= H(a,(,i)) if Hjq= H(a,(z?_l), then,
. logH ;
H i, = H (a,(l’)) selection is made. In this case g—J"—i = u; (n)
" log H in

holds.

Case II: If there are at most m elements H (aSS )) between H (af,i))

and H(a,(ql?rl) where m<k-1 and . (s#i,1<s<k,reN), ie,

H;= H(aﬁ,i)) and H ;41 = H(afgl), then x;(n) can be written as
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( )_ logH(al(ll-zl) logH(al(ll-Zl logHj+”l lOgH
A= () logH ; logH ; . (') '
log H(a, ") B jypy g1 jimo 10g H(a )
 logH
Let —8221+1 Genote the maximum of
logH,
logH(ocn+1) logHjer logHj+1

02 m 102 H et logH()

and define H; =H,, then
n

m+1
logH ; « logH
1;(n) < [_i_hl_H] or .._%]—n"'l > (g (n ))1/(m+1) holds.

log H in logH ; in

Case III : If there are more than k — 1 elements H (a(s)) between
H(a(’)) and H(a()l) where (s#i,1<s<k,reN), then, there is

some aS 5) (s #1) such that

[H@™), Ha®)1c [H(a‘”) H@$))1.

In this case the element H Jn is selected in the subinterval

[H(@®), H@a'P)].

r+l
a) If there are at most k -2 elements H i between H (a,(.s)) and

H (a(s) ) then, the element H 1s. selected as in Case II.

b) If there are more than k -2 elements H ; between H (a,(.s))

and H (a(s) ) then, there is at least one index v (1<v < k) different
from i and s such that
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[H@{"), H@\?))1clH @), H@!))1.

Now, the same discussion is considered for the interval
[H(a{"), H(@\"))]. This discussion is completed at most finitely step.

So, for the selected elements H in

log HJn +1

log H jn

> (1, W)V (<, 1<y <k)

holds and also, since lim g;(n) =0 for V1<i<k we write

H-—>»00
logH ; logH
lim hi /R oo or lim sup—b—tl— = (2.5)
n—>0 logHjn joo logHj

Let jobe a natural number such that
H;> max{H(al(D),..., H(al(k))} for Vj > Jjo.

We define the natural numbers #;(j) and the p-adic algebraic
numbers y ; as

t(])—max{ ’H(a(’))<Hj} (1<i<k) (2.6);
1 .
Y =ag +0qar(12j) +...+akat(l/:zj) (1<i<k). 2.7)
Now, for the polynomial
F(y, Xpses Xo4]) = Y =X = X9X3 = oo = X Xop 4]

F(yj, ag,..., t(kz y ) =0 holds. Applying Lemma 3 we write
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/k
\ < 22mt* 2k +Dmek mek ) & ™
H(y;)<3 [H(ag)..H(ay) ] Hoay (;)-Hay, ()

where [Q(ag, ..., &) : Q1= m. Putting
k k ' k
¢y = 32}11[ +(2k+1ml [H(Olo), . H(ak)]mf

k
and from (1.6); we find H(}/j)SczH;?lkg . Since  lim H; = oo
there is a natural number j; such that j; 2 jo and H ; > ¢, for Vj 2 jj.

Hence, taking p = mkt® +1 we have
H(y )<H? (Yjz jp). (2.8);

We suppose that ¥ ¢ A (If ¥ € A , the theorem holds). We approximate
¥ with the algebraic numbers v From (1.2); we write

1 1

D 01 k) ox
CACHYEIRY Hla, ()

0<]y-yj]p<c3max (2.9)

where c¢3 :max“allp,..., |ak|p } Using the definition of H; and
(2.6); we have

H(at(lfzj)ﬂ)ijH(VlsiSk). (2.10)

With a combination of (2.9) and (2.10) we write
0<‘7/—}/] lp <C3H%
j+1
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where 6’:min{§1,..., Oy } On the other hand, since lim Hj =00
jo®

. _ : o 5'/2
there is a natural number j, such that j, >j; and H i +/1 > ¢y for

Vj2 j,. Thus, putting § = &'/2

1 . . .
0<|r-7;| < (Yizjp) @.11)
Jj+1

holds. Taking logarithms of both sides (2.8); we have

logH(y ;
g (y,)<1

(2.12)
plogH ;
| SlogH j,, |
Let us define w(j) = ——~— . From (2.12) we obtain
plogH
Hiy )" <HS, (V)2 jp) (2.13)
J j+l =J270 .
So, using (2.13) in (2.11) we find that
0<|y-y;| <———= (Vjzjy). (2.14)
AW()
P H(yj)
SlogH ; 11
From (2.5) lim w(j,)= lim ———"— =00 and by (2.14)
n—>0 n—o plogH;
1
O<‘y~7/j” l (2.15)

< —_—.
PoH@, I
Thus, we have y e U .

126



. . lOg H j+1
Theorem 4. In Theorem 3, if lim — 2
»e logH;

=00 and

r=liminf dery;, then y =0, + oy, +...+a,y, e AUU,.

jow

Proof : If ye A the statement is clear. Let y ¢ A . We prove that
y€U,.In (2.8); wereplace j+1 for j and write

H(yj,) <HS,. (2.16)
When (2.11) is used
O<fr-v;| <1 (Viziy) @.17)
P H(Vj+1) P
. . . j+1 . . . dlog Hj,
holds true. Since lim " =00 lim w(j) = lim =00 and by
> JogH; joo n—>o plogH,

I
@14) 0<ly-v;| <oy holds.
]

Now, we shall prove that lim H(yj) =00, From (2.11)
J—0

rin=ril, =lrsa=rier=r|, <mxdlpsr| i), bt
Jj+1

holds for Vj > j,. A combination of this inequality and Lemma 1 gives

c 1 e
? 7 <‘ Y+l “7’,“ <——(Vjzjp)  (2.18)
H(y )" Hy ;)" PoH,

or
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e, HY < Hiy ) Hy D' (V2 jy). (2.19)

Thus, from (2.19) and (2.8)j we find

coHjy <H(y ) "HOy ) <H(yp)'HP (Vi jp).  (2.20)

Since lim ki
o logH;

=oo there is a natural number j3 such that j3 > j,

and |
HI® <c,HS. 221)

From (2.20) and (2.21) we get
¢
H} <c HY <H(y ) Hey)" <H(yj) HP

and so we find

Hf <H(yjyp) (Vi j3). (2.22)

On the other hand, since lim H
joeo

j=® it is true that

lim H(y ;) = lim H(y;) = .
= 7

Thus, the conditions (1), (2) and (3) of Theorem 1 are satisfied,

then, we have y € U, where r = lim inf dery;.
j—o

Theorem 5.If y; eU and y, e U® in Qp then y| +y4, 172 € AUU .

Proof : Suppose that the number y; belongs to subclass U,,. From
Definition | there are infinitely many p-adic algebraic numbers {a; }
such that
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1

i —aif, < H ()"0
!

where  lim supw; (i) =ccand dega; =m. Since lim supw; (i) =co

{—>0 >
there is a subsequence {wj(iy) } of {a;} such that lim wi(iy) =0
k—w
and
_ 1
‘yl—aik < . (3.1

p H(aik )wl(ik)

~ On the other hand, since y, elU® from Definition 2 there are
infinitely many p-adic algebraic numbers {ﬂk }which satisfy the
following properties

degBy =ny <¢ (LeZ*) and klim H(By) = (3.2)
—>00
and
By e w69
H(By)™? HBk 1)

where lim w (k) =c and some fixed §; > 0. Also, we can write
k—o

[/J’k+1"ﬂkfp=|ﬂk+1—72 +7’2*ﬂklp
< max || By 41 —72|p’ |7’2~ﬂk'p }

and using (3.3) we find

’ﬂk+1“ﬂk|p<max{ 1 ! }

H(,Bk+1)w2(k+l) ’ H(,Bk)wz(k)
From H(By)<H(Pri1)
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1

———— 3.4)
H(,Bk )w(k)

| Bic1 = By p <
holds where w(k) = min{ wy (k), wy(k +1) }. A combination of (3.4) and

Lemmal gives

1
H(B )" ™

‘

H(Bp )" H(B)"

<|ﬂk+1—ﬂk|p<

or
- 1
H(B)" O™ <—H(Br)".
1
Since lim H(By)=co there is a natural number kysuch that
k—o

H(ﬂk+1)>i for Vk >k . Hence we can write
LA

H(ﬂk)w(k)—n < H(,Bk.|.1)n+l

for Vk >kg. Taking the logarithms of both sides of the last inequality we
write

_ log H(fBy 1)
(wk)—-n)<(n+1) _—_logH(,Bk) .

Thus, since lim w(k) = o0
k—

m 08HByy1) _

(3.5)
k—o logH(fy)

is valid.

Let us show that y, +y, e AUU. If y|+y, €A, then, the
statement is clear. We assume that | +y, ¢ A. Now, we approximate
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the number y| +y, with the p-adic algebraic numbers 7x Wwhich is

selected in the intervals [H(ay, ).H (e, M (ik)] as in the following

cases.

Case I: If there is no element H(S,) betweenH (@;, ) and

H(e; ‘ i k) then the p-adic number is defined as

Yk = + By

where t(k) =max{v | H(a,) < H(a,-k ) } In this case

H(Byxy) < Hay, ) < Hoay, )"1000. (3.6)

is valid. From (3.1) and (3.3) we write

1 1
H(ay )™ G H(Byhy41)8

|7’1 +72 _7k|p < max

and from (3.6) we can write H(ay, Yyl < H(,b’t(k)+1)§. Thus, we
have

1

R — (3.7
H(O‘ik )ﬂ(k)

1472 =74, <

where z(k) = min{w; (i ),6w, (i)} .

It satisfies F'(yy, @, > Prky) = 0 for the polynomial
F(y,x1,%3) = y —x; —x3
and applying Lemma 3
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2 2 2
H(y ) <3% H(y )" H(Bp))"

holds where ¢ > max{ m, n } . Using (3.6) in this inequality we have

402 202
H(y)<3 H(“ik) )
Since lim H (a,-k ) = oo there is a natural number k{ such that k; > kg
k—o0

2
and H(a,-k ) > 34" for Vk > k. Hence, taking as p = 202 +1 we have

H(r) < H(ay, )P (Vk2ky). (3.8)

So, using (3.8) in (3.7) we find

r1+72 =7, < (Ve zkp). (3.9)

H(;/k)/‘(k)/p

Case II: If there is only one element H(f,) between H(q; ' ) and

H (aik M (ik), then the number y; can be selected in the following

manner: Let H(By))denote the element between H (aik) and

H(e;, )10 Thuys,
H(a, ) < H(Byiy) < H(a;, Y1 ()
holds. On the other hand, it can be written that

IogH(a,-k Wi () _ IOgH(Ol,'k A (ik).logH(ﬂr(k)) .
log H(a;, ) log H(Byiy)  logH(a;, )

wy (g ) =
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wi iy )
] log H (r;, )™ k >]ogH(,B,(k))

i) >
1OgH(ﬂI(k)) logH(a,-k )

, then, it follows that

wiGip) )
logH(a;, )
log H(ﬂr(k))

wy (i) < and so

log H (at;, )" %)
10gH(/Br(k))

> Jwr ) (3.10)

holds. Let be ‘?’k =a;, + Br(ky- From (3.1) and (3.3) it follows that

1 1
—y| <
n+r2=rid, € max{H(ai ) H ()2 ® }
k

i) logH(a,-k)
, W (i) —
Using logH(a; )" =log H(Byy) 57 P10 and (3.10) it

follows that

1 1
y ’ k
H(By V"™ H By )"

|71 +72 *yklp < max

Putting (k) = min{ \fw; (ig ), 5wy (t(K)) | we have

|

|71 +7’2_7’k|p <

It satisfies  F(yy,a;,,pi))=0 for the  polynomial

F(y,x;,xp)=y-x —xo and applying. Lemma 3 and using
H(a,jk ) <H(Byxy) it follows that
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2 2
H(y) <34 H(Bgp)¥
where €2max{ m,n}. Since lim H(,Br(k))zoo there is a natural
k—c

2
number ky such that ko > k; and H(f,q)) > 3% for Vk 2k, . Thus,

we have
H(yy) < H(Byyy))? (3.12)

for Vk >k, where p = 202 +1. Using (3.12) in (3.11) we have

|71+y2—yk|p < (Vk >ky). (3.13)

H(y, )/l(k)/l’

log H (Byx) § log H (e, )1 %)

(i) It
log H (e, ) log H(Bsky)

, then it follows that

log H(By(xy) .
W21,W1(lk) . (314)

Letbe yy =@y, + Byk)-1- A combination of (3.1) and (3.3) gives

1 1
H (o )" H(By4y)°

71 +72 _7k|p‘5 max

Jl ;
Using log H(ﬂr(k))5 =logH(e;, ) o8 H By loe H @y ) and
(3.4) it follows that
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1 1

|71 +72’“7’k|p < max

Putting (k) = min{ wy (if ), 8w (ig ) |, we find

1

iy =vel, ST (3.15)
| IP H(O‘ik ),U(k)
Using (3.12) in (3.15), we have
1
lr1+72—7i| S——— (VEk2ky). (3.16)

p _H(Vk )ﬂ(k)/P

Case III: If there are at least two elements H(f,) between

H(a;, ) and H(q;, )"10k) | then we define the number Yk as
Tk = 0%, +Buk)
where t(k) =min{v |H(at,) > H(cyj, ) { . In this case, it follows that
H(aik ) < H(.ﬂt(k))<H(ﬂt(k)+l) SH((X,‘k )WI (lk) .
A combination of (3.1) and (3.3) gives

1 |
H(Olik Wi (i) H(,Bt(k) )wz(t(k))

|71+ 72 =7, < max
and since H (e, ywili) 5 H(Brky+1)
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| |
71+¥2 ~ ¥k, < max ’ '
'p {H(ﬂt(k)ﬂ) H(ﬂl(k))wz(t(k))}

can be written. If H(ﬁr(k)ﬂ):H(ﬁr(k))logH(ﬂt(k)H)/logH(ﬁt(k)) i

considered
1

H ()"0 17

’71+72_7k|p5

holds where 4u(k) = min{log H (By(xy11)/1og H (B, w(it) | . Since
the inequality (3.12) holds in Case IIl and using (3.17) we have

ri+r2 =i, < (V2 k). (3.18)

H(;,k)#(k)/l?

There are infinitely many disjoint intervals
[H (a;, ), H (e, )"V %) ] since lim H(a;, ) =co.
k—o0
Thus, for the numbers 7 Which are selected for three cases it holds

1

~ <o -
I}/l 72 7k-|P h H(;,k)#(k)/P

where lim u(k)=o0. Sothat y; +y, €U .
k—>o0

On the other hand, it can be easily show that 7,7, € AUU with

the same method. In fact, we will only consider the first case.

Case I: If there is no element H (B,) between H (O‘ik) and

H (a;, )™ ) then, the p-adic number is defined as Y =, Bk
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where (k) =max{v | H(a,) < H(a;, ) . From (3.1) and (33) it

follows
|71-72 =7, |p = \71-72 =&, Brky + 1By — 1%, \p

7], Ao,

< max = 5,H wiGg)
(Brky+1) (e, )

and also, using H(al-k i ) < H(Bik)y+1)

7, |,, |ﬂt<k>|p
H(ay, o100 " H(ay, )™ )

Yo -y | <max
‘71 Yo=YV ‘p
(3.19)
holds. On the other hand, there is a natural number kg such that
|ﬂt(k)\p =‘,Bt(k0)\p

for Vkxkp. Let be C=max{'A,B} where A==|;/1|p and

B= iﬁf(kO)lp . Using these notations in (3.19), we write

C

Ny A B c—
‘7’17’2 Vk!p H(aik),u(k)

where u(k) = min{ owy (i), wi(ig) } . Since lim H(aik ) =oo there is a
k—©

natural number k; such that k; >k and H(dik )>C for Vk=kj.
So,
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1

—— (Vk2k) (3.20)

Yo =y <
’7’1 Y2 =7 k‘p
holds. It satisfies F(y’k,uik,ﬁt(k)):o for the polynomial

F(y,x;,x9)=y—-x1xp and applying Lemma 3 and using
HPB ) < H(a;, ), it follows that

2 2
H(y', ) < 3% H(oy ).

Since lim H(aj, )=co there is a natural k, such that k, >ky and
11—

2
H(a,-k ) > 347 Thus, putting p = 202 +1, we have H(y'k ) < H(a,-k )P
for Vk > k. In this inequality using in (3.20) we find

1
<
P H(a, yH®=D/p

172 -7] (Vk>ky).  (321)

The other cases can be treated with the same method. Finally, we
have v, Y, €AVU.

In Theorem 5 if we take y , €U instead of y , €U ¥, the theorem
fails to be true. So that if Y+ 7, €U, then, the number Y, +v, does

not necessarily belong to A w U . Now, to prove this, we first prove the
following theorem in Qp which is proved for real numbers by Erdés [6].

Theorem 6. Let x a p-adic number. Then, there are some Liouville
numbers 7,»7, suchthat X=y, 7,
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Proof : If x is a rational number then the statement is clear. In fact,
for any Liouville number ¥, the number y =x-y, isa Liouville

number and x = Yy t7, holds.

o0
We assume that x be non-rational p-adic number and x= X a; pk
k=0
where g, =0, 1, ..., p—1. We define the numbers Yy:¥, as

nM8

Vi =

k

k S ok
byp” and y, = Ycpp
0 k=0

where for n!<k <(n+1)!

by =a; and ¢, =0 (n=1,3,5,..)
bk =0 and Cp = ag (n=0,2,4,...)

ie.,
7, =O+a1p1 +0p2 +...+0p5 +a6p6 +...+az3pz3 +Op24 +...
Y, =agp +0p1 +a2p2 +..+a5p5 +Op6 +...+0p23 +a24p24 +...
a) If there are at most finitely many numbers b, distinct from O,
then, 7, €0 and 7, € U; will be infinitely many numbers c; distinct

from 0. Thus, y, €Q and x=y +y, eU; . Moreover, —)2C~eU1 and

X X
=,
2

X =

b) If there are infinitely many numbers l;k and ¢, distinct from
0, then the numbers y,and y , are Liouville numbers. Now, we shall

prove this.
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n
Put s, = Zbkpk. We shall approximate 7, by algebraic
k=0

numbers s(9,)r.; . It follows that

(

2n+1)! 2n+D+1
) +a(2n+1)!+1p( ) +l

Vi T S@n)y- |p =1a(2n+1)!p ,

2n+1)!
=}P( 7D ’p|a(2n+1)!+a(2n+1)!+1p+~~‘p

and so we have

2n+1 _ 1
H(smy-

1
!71 _5(2")!—1‘,; S(p(Zn)!) 2L

Since lim (2n+1) = o the number 7, is a p-adic Liouville number.
n—>

‘ n
With the same method, putting ty = 2.¢k pk it is possible to
k=0
approximate y 5 bY t2,_1y1-1. It follows that

1 )2n - :
PIC H (tn-1y-1) ™"

71 ~tan-1-1 , <(

and so the number 7, is a p~adic Liouville number.

Let be x = p% OZO)ak pk where o € Z. From the first part of the
proof there are p-ka;l(i)c Liouville numbers Yy> 7, such that
X = p"‘(yx1 +7.,). Then, pa71 and payz are Liouville numbers that
satisfy x = payl + pa;/2 :
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Finally, for every xe(, there are 7,7, €Uy such that
x=y, +7,.
Hence, in the Theorem 5 if we replace the condition y, €U s

with the condition ¥ , € U, the theorem fails to be true. Since we know

that there are p-adic numbers not belonging to the classes A and U by
[13] , for any number x¢ ALU(xeQ),) there are numbers

Yo7, €Uy such that x=y, +v, by Theorem 6. If the Theorem 5

would be true, the number x would have belonged to A w U. But this is
impossible since x ¢ AUU .

We can give a result for Theorem 5.

Corollary 1. Let £ €U Ve, eU® and n e N. Then,
n

ay £+ X 7, e AulU,
k=1

n
b) &.11 Y e AUU.
k=1 '

Proof : We shall prove this result with Mathematical . Induction.

For n =1 from Theorem 5itholds {+y ., §y, e AUU.

Let the statement be true for any numbern, i.e.;

n n
§+ZykeAuU and cf.HykeAuU.
k=1 k=1

Now we shall prove the statement for n+1.

n n
o+ >y, €A and S]]y, €A it is clear that
k=1 k=1
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n+l

n
.§+k§17k 7 :§+k};1;/k eU’cU

n+l

=% 7, €U° cU holds.
k=1

n+l

n
fory . e U® and é‘.k?;lyk 0%

n n
We assume that &+ 3, Y, € U and &.T1 ¥, €U. From Theorem 5
' k=1

k=1
we obtain )
n n+l1
E+ X7, Y, =6+ 27y, €AUU
k=1 k=1
and
n n+l
f'zyk'ynn =§'Z7/k cAVU.
k=1 k=1
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