An Investigation on P-Adic U Numbers¹

Hamza MENKEN

ABSTRACT: In this paper, firstly we show that there are infinitely many p-adic numbers γ such that $\gamma \in U_m$ and $P_i(\gamma) \in U_m$ where $k \in \mathbb{N}$, $1 \le i \le k$ and $P_i(x)$ are non-constant polynomials with integer coefficients. Secondly, we prove that the finite linear combination of p-adic algebraic numbers and semi-strong p-adic U-numbers belong to $A \cup U$. Finally, we prove that if γ_1 is a p-adic U-number and γ_2 is a semi-strong p-adic U-number, then both $\gamma_1 + \gamma_2$ and $\gamma_1 \cdot \gamma_2$ numbers belong to $A \cup U$. Moreover, we remark that if γ_2 is taken as a p-adic U-number the last statement fails to be true.

Introduction

Mahler [10] divided the complex numbers into four classes as A, S, T, U. Later, Koksma [7] set up another classification of complex numbers. He divided them into four classes as A*, S*, T*, U*. Wirsing [14] has shown that these two classifications are equivalent.

Let p be a fixed prime number and $|...|_p$ denotes the p-adic valuation of the set of rational numbers Q. Furthermore let Q_p denote all the p-adic numbers over Q.

Mahler [11] had a classification of p-adic numbers as follows: Let P(x) be a polynomial with integral coefficients and H(P) be the height of P(x). Suppose that $H,n\in N$ and $\xi\in Q_p$. Mahler lets

¹ This paper is based on the author's PhD's thesis accepted by the Institute of Science of Istanbul University in 2000. I am grateful to Prof. Dr. Kamil ALNIACIK for his valuable help and encouragement at all stages of this work.

$$w_n(H,\xi) = \min\{|P(\xi)| : \deg P \le n, H(P) \le H, P(\xi) \ne 0\}.$$

It is clear that $0 \le w_n(\xi, H) \le 1$, since, if P(x) = 1, then $\left| P(\alpha) \right|_p = 1$. Next Mahler lets

$$w_n(\xi) = \limsup_{H \to \infty} \frac{-\log w_n(H, \xi)}{\log H}$$
 and $w(\xi) = \limsup_{n \to \infty} \frac{w_n(\xi)}{n}$.

It is clear that $w_n(\xi)$ is nondecreasing as function of n. One has, $0 \le w_n(\xi) \le \infty$ and $0 \le w(\xi) \le \infty$. If $w_n(\xi) = \infty$ for some integer n, let $\mu(\xi)$ be the smallest such integer; if $w_n(\xi) < \infty$ for every n, let $\mu(\xi) = \infty$. Mahler calls the number ξ a

A – number if
$$w(\xi) = 0$$
 and $\mu(\xi) = \infty$,
S – number if $0 < w(\xi) < \infty$ and $\mu(\xi) = \infty$,
T – number if $w(\xi) = \infty$ and $\mu(\xi) = \infty$,
U – number if $w(\xi) = \infty$ and $\mu(\xi) < \infty$.

On the other hand, Schlickewei [14] gives a classification of p-adic numbers as follows: Let $\xi \in Q_p$ and

$$w_n^*(H,\xi) = \min \left\{ \left| \xi - \alpha \right| : \deg \alpha \le n, H(\alpha) \le H, \xi \ne \alpha \right\}$$

where H and n are natural numbers. Let

$$w_n^*(\xi) = \limsup_{H \to \infty} \frac{-\log(Hw_n^*(H,\xi))}{\log H}$$
, and $w^*(\xi) = \limsup_{n \to \infty} \frac{w_n^*(\xi)}{n}$.

It is clear that the inequalities $0 \le w *_n (\xi) \le \infty$ and $0 \le w *(\xi) \le \infty$ hold. If for any index $w *_n (\xi) = \infty$, then $\mu *(\xi)$ is defined as the smallest of them; otherwise, $\mu *(\xi) = \infty$. So $\mu *(\xi)$ is uniquely determined and neither $\mu *(\xi)$ nor $w *(\xi)$ can be finite. There are the following four possibilities for ξ . The p-adic number ξ is called

A* – number if
$$w^*(\xi) = 0$$
 and $\mu^*(\xi) = \infty$
S*– number if $0 < w^*(\xi) < \infty$ and $\mu^*(\xi) = \infty$
T*– number if $w^*(\xi) = \infty$ and $\mu^*(\xi) = \infty$
U*– number if $w^*(\xi) = \infty$ and $\mu^*(\xi) < \infty$.

 ξ is called a U*- number of degree m $(m \ge 1)$ if $\mu^*(\xi) = m$. The set of padic U*- numbers of degree m is denoted by U_m^* . Thus $U^* = \bigcup_{m=1}^{\infty} U_m^*$ holds.

The p-adic set U_1^* is called p-adic Liouville numbers. Long [9] proved that $U_m = U_m^*$. We give some definition and lemmas.

Definition 1. Let $\gamma \in Q_p$ and $m \in N$. The number γ is called p-adic U_m number if for every w>0, there are infinitely many algebraic numbers α of degree m with

$$0 < |\gamma - \alpha|_p < H(\alpha)^{-w}$$

and if there are constants C, K > 0 depending only on γ and m such that the relation

$$0 < |\gamma - \beta|_p < C.H(\beta)^{-K}$$

holds for every algebraic number β in Q_p which has degree less than m.

Lemma 1. (Schlickewei) Let α and β are two nonconjugate algebraic numbers of degree t and k, respectively. Then, for $M > \max\{t, k\}$

$$\left|\alpha - \beta\right|_p > \frac{c_1}{H(\alpha)^{M-1}H(\beta)^M}$$

where $|\alpha|_p = p^{-h}$, $r = \min\{0, h\}$ and $c_1 = p^{(M-1)r - M(|h|+1)} ((2M)!)^{-1}$ (See [13]).

Lemma 2. (J. F. Morrison) Let $\alpha \in Q_p$ and

$$P(x) = a_0 + a_1 x + ... + a_n x^n \in \mathbb{Z}[x]$$

such that $P(\alpha) = 0$. Then,

$$|\alpha|_p > H(P)^{-1}$$
. (See. [12]).

Lemma 3. (O. Ş. İçen) Let $\alpha_1,...,\alpha_k$ $(k \ge 1)$ be algebraic numbers in Q_p with $[Q(\alpha_1,...,\alpha_k):Q]=g$ and let $F(y,x_1,...,x_k)$ be a polynomial with integral coefficients, whose degree in y is at least one. If η is an algebraic number such that $F(\eta,\alpha_1,...,\alpha_k)=0$, then the degree of $\eta \le dg$ and

$$H(\eta) \le 3^{2dg + (l_1 + ... + l_k)g} H^g H(\alpha_1)^{l_1 g} ... H(\alpha_k)^{l_k g}$$

where $H(\eta)$ is the height of η , $H(\alpha_i)(i=1,...,k)$ is the height of α_i and, H is the maximum of absolute values of the coefficients of F, $l_i(i=1,...,k)$ is the degree of F in x_i and d is the degree of F in y. (See. [6]).

Theorem 1. Let $\{\alpha_i\}$ be sequence of algebraic numbers in Q_p with

(1)
$$\deg \alpha_i = m_i \le \ell \text{ and } \lim_{i \to \infty} H(\alpha_i) = \infty \quad (\ell \in \mathbb{Z}^+)$$

(2)
$$\left|\alpha_{i+1} - \alpha_i\right| = \frac{1}{H(\alpha_i)^{w_i}}$$
, where $\lim_{i \to \infty} w_i = \infty$

(3)
$$0 < \left| \alpha_{i+1} - \alpha_i \right| < \frac{1}{H(\alpha_{i+1})^{\delta}} \text{ for } \delta > 0.$$

Then, $\lim_{i\to\infty}\alpha_i\in U_m^*$ where $m=\liminf_{i\to\infty}m_i$. (See. [4]).

Definition 2. Let $\gamma \in Q_p$. If there are infinitely many p-adic algebraic numbers $\{\alpha_i\}$ such that

(1)
$$\deg \alpha_i = m_i \le \ell \text{ and } \lim_{i \to \infty} H(\alpha_i) = \infty \quad (\ell \in \mathbb{Z}^+)$$

(2)
$$0 < |\alpha_{i+1} - \alpha_i| = \frac{1}{H(\alpha_i)^{w_i}} \text{ where } \lim_{i \to \infty} w_i = \infty$$

(3)
$$0 < |\alpha_{i+1} - \alpha_i| < \frac{1}{H(\alpha_{i+1})^{\delta}}$$
 for some fixed $\delta > 0$.

Then, the number $\lim_{i \to \infty} \alpha_i = \gamma \in \mathbb{Q}_p$ is said to be an irregular semistrong p-adic U-number. If $\lim_{i \to \infty} \inf m_i = \lim_{i \to \infty} m_i$, γ is called a semi-strong p-adic U-number. If $\lim_{i \to \infty} \inf m_i = m$ Theorem 1 proves that $\gamma \in U_m$.

In this paper U_m^s denotes all semi-strong p-adic U_m -numbers and U^s denotes all semi-strong p-adic U-numbers.

Main results of this paper are the following theorems.

Theorem 2. Let $m \in \mathbb{Z}^+$ and $P_i(x) \in \mathbb{Z}[x]$ where $\deg P_i \geq 1$ (i=1,...,k). Then there are infinitely many $\gamma \in U_m$ such that $P_i(\gamma) \in U_m$ for every $1 \leq i \leq k$.

Proof: Let α be a p-adic algebraic number of degree m and $\alpha^{(1)} = \alpha, \alpha^{(2)}, ..., \alpha^{(m)}$ denotes the conjugates of α . Consider the equation

$$P_i(\alpha^{(r)} + y) = P_i(\alpha^{(s)} + y) \ (1 \le r, s \le m, r \ne s).$$
 (1.1)

For fixed r, s, i, (1.1) is equivalent to some polynomial equation

$$c_t y^t + \dots + c_1 y + c_0 = 0$$

where the coefficients c_j are p-adic algebraic numbers. Since $\alpha^{(r)} \neq \alpha^{(s)}$ for $r \neq s$, $c_t \neq 0$ and so (1.1) has only finitely many solutions in $y \in Q_p$. Consider $y = p^n$, then there is a natural number n_0 such that $\deg P_i(\alpha + p^n) = m$ (i = 1,...,k) for $\forall n \geq n_0$.

Let $\{w(i)\}$ be a sequence of positive real numbers with $\lim_{i\to\infty} w_i = \infty$. We define algebraic numbers α_i and integers n_i (i=1,2,...) as

$$\deg P_i(\alpha + p^{n_1}) = m \ (i = 1,...,k), \ \alpha_1 = \alpha + p^{n_1}$$
 (1.2)

(a)
$$\deg P_t(\alpha + p^{n_{i+1}}) = m \ (t = 1,...,k)$$

(b)
$$H(\alpha_i)^{w(i)} < p^{n_{i+1}}$$
 (1.3)

(c)
$$n_i^2 < n_{i+1}$$
 $(i \ge 1)$
$$\alpha_{i+1} = \alpha_i + p^{n_{i+1}}$$
 (1.4)

From (1.2) and (1.4) we have $\alpha_{i+1} = \alpha + \sum_{j=1}^{i+1} p^{n_j}$. $F(\alpha_{i+1}, \alpha, \sum_{j=1}^{i+1} p^{n_j}) = 0$

holds for the polynomial $F(y, x_1, x_2) = y - x_1 - x_2$. Applying Lemma 3 we find

$$H(\alpha_{i+1}) \le 3^{4m} H(\alpha)^{2m} H(\sum_{j=1}^{i+1} p^{n_j})^{2m}.$$

Using (1.3)(c) we write

$$H(\sum_{j=1}^{i+1} p^{n_j}) = p^{n_1} + ... + p^{n_{i+1}} \le (i+1)p^{n_{i+1}} \le p^{2n_{i+1}}$$

Since $\lim_{i\to\infty}p^{n_i}=\infty$, there is a natural number i_1 such that $p^{n+1}\geq 3^{4m}H(\alpha)^{2m}$ for $\forall i\geq i_1$. So, we can write

$$H(\alpha_{i+1}) \le (p^{n_{i+1}})^{2m+1} \ (\forall i \ge i_1).$$
 (1.5)

A combination of (1.4) and (1.5) gives us

$$\left|\alpha_{i+1} - \alpha_i\right|_p = \left|p^{n_{i+1}}\right|_p = \frac{1}{p^{n_{i+1}}} \le \frac{1}{H(\alpha_{i+1})^{1/(2m+1)}} \ (\forall i \ge i_1).$$

Writing a $\delta = 1/(2m+1)$, we obtain

$$\left|\alpha_{i+1} - \alpha_i\right|_p \le \frac{1}{H(\alpha_{i+1})^{\delta}} \quad (\forall i \ge i_1). \tag{1.6}$$

On the other hand, it follows from (1.3)(b) and (1.4) that

$$\left|\alpha_{i+1} - \alpha_i\right|_p \le \frac{1}{H(\alpha_i)^{w(i)}} \quad (\forall i \ge i_1).$$
 (1.7)

Thus, $\{\alpha_i\}$ satisfies the conditions (1), (2) and (3) of Theorem 1 and so we have $\lim_{i\to\infty}\alpha_i=\gamma\in U_m$.

Now we show that $P_t(\gamma) \in U_m$ (t=1,...,k). Put $\beta_i = P_t(\alpha_i)$. Applying Taylor Formula, we have

$$P_{t}(\alpha_{i+1}) = P_{t}(\alpha_{i}) + (\alpha_{i+1} - \alpha_{i}) \frac{P'_{t}(\alpha_{i})}{1!} + (\alpha_{i+1} - \alpha_{i})^{2} \frac{P''_{t}(\alpha_{i})}{2!} + \dots$$

It is clear that $P_l^{(j)}(\alpha_i) = 0$ for $\forall j \geq M$ where $M > \max \{ \deg P_1(x), ..., \deg P_k(x) \}$. Thus, taking $| \cdot |_p$ of both sides we write

$$\left|\beta_{i+1} - \beta_i\right|_p = \left|\alpha_{i+1} - \alpha_i\right|_p \left|P_t'(\alpha_i) + \dots + (\alpha_{i+1} - \alpha_i)^{M-1} \frac{P_t^{(M-1)}(\alpha_i)}{(M-1)!}\right|_p$$

Now, we can determine an upper bound for the value

$$\left| P'_t(\alpha_i) + \dots + (\alpha_{i+1} - \alpha_i)^{M-1} \frac{P_t^{(M-1)}(\alpha_i)}{(M-1)!} \right|_p.$$

On the other hand, it can be easily proved that there is a natural number i_2 such that, $\left|\alpha_i\right|_p = \left|\alpha_{i+1}\right|_p$ for $\forall i \geq i_2$. Thus, since $\left|\alpha_{i+1} - \alpha_i\right|_p < 1$, $\left|P_t^{(i)}(\alpha_i)\right|_p < p^{M|h|}$ and $\left|\frac{1}{j!}\right|_p < p^M$ $(1 \leq j < M)$. So, we have

$$\left| P_t'(\alpha_i) + \ldots + (\alpha_{i+1} - \alpha_i)^{M-1} \frac{P_t^{(M-1)}(\alpha_i)}{(M-1)!} \right|_p < p^{M|h|}.$$

Hence, we find that

$$\left|\beta_{i+1} - \beta_i\right|_p = \left|\alpha_{i+1} - \alpha_i\right|_p c_1 \tag{1.8}$$

where $c_1 = p^{M(|h|+1)}$. We consider the polynomial $F(y,x) = y - P_t(x)$. Then, $F(\beta_i, \alpha_i) = 0$ holds. Applying Lemma 3 gives

$$H(\beta_i) \le 3^{2m+M} H(\alpha_i)^{mM}$$
.

Since $\lim_{i\to\infty} H(\alpha_i) = \infty$, there is a natural number i_3 such that $i_3 \ge i_2$ and

$$H(\alpha_i) > 3^{2m+M} \ (\forall i \ge i_3).$$

Hence, putting p = mM + 1 we have

$$H(\beta_i) \le H(\alpha_i)^p \ (\forall i \ge i_3).$$
 (1.9)

and also using $(1.9)_i$ and (1.8) in (1.6) we write

$$\left|\beta_{i+1} - \beta_i\right|_p \leq \frac{c_1}{H(\alpha_i)^{w(i)}} \leq \frac{c_1}{H(\beta_i)^{w(i)/p}}.$$

Since $\lim_{i\to\infty} H(\beta_i) = \infty$ there is a natural number $i_4 \ge i_3$ such that

$$H(\beta_i) > c_1 \ (\forall i \ge i_4).$$

Hence, we have

$$\left|\beta_{i+1} - \beta_i\right|_p \le \frac{1}{H(\beta_i)^{(w(i)-p)/p}} (\forall i \ge i_4).$$
 (1.10)

using (1.8) and $(1.9)_{i+1}$ in (1.6) we obtain

$$\left|\beta_{i+1} - \beta_i\right|_p \le c_1 \left|\alpha_{i+1} - \alpha_i\right|_p \le \frac{c_1}{H(\alpha_{i+1})^{\delta}} \le \frac{c_1}{H(\beta_{i+1})^{\delta/p}}$$

$$(\forall i \ge i_{\Delta}).$$

Put $\delta_1 = \delta/2p$. Since $\lim_{i \to \infty} H(\beta_i) = \infty$ there is a natural number $i_5 \ge i_4$ such that $H(\beta_i)^{\delta_1} > c_1 \ (\forall i \ge i_5)$. Hence, we write

$$\left|\beta_{i+1} - \beta_i\right|_p \le \frac{1}{H(\beta_{i+1})^{\delta_1}} (\forall i \ge i_5). \tag{1.11}$$

 $\left\{\beta_i\right\}$ satisfies the condition (1), (2) and (3) of Theorem 1 by (1.10) and (1.11). Finally, we have

$$\lim_{i \to \infty} \beta_i = P_t (\lim_{i \to \infty} \alpha_i) = P_t (\gamma) \in U_m \ (t = 1, ..., k).$$

Example 1. Consider the function $y^m = x^n$ where $n, m \in \mathbb{N}$. If we take as $y = t^n$, $x = t^m$ and we consider the polynomials

$$P_1(t) = t^n$$
 and $P_2(t) = t^m$,

By Theorem 2, there are infinitely many numbers $\gamma \in U_m$ such that $P_1(\gamma) \in U_m$ and $P_2(\gamma) \in U_m$. Hence, there are infinitely many numbers $x, y \in U_m$ satisfying the condition $y^m = x^n$.

Theorem 3. Let $\alpha_0, \alpha_1, ..., \alpha_k$ be p-adic algebraic numbers and $\gamma_1, ..., \gamma_k$ be semi-strong p-adic U-numbers. Then, the number $\gamma = \alpha_0 + \alpha_1 \gamma_1 + ... + \alpha_k \gamma_k$ belongs to $A \cup U$.

Proof: From Definition 2, there are p-adic algebraic sequences $\{\alpha_j^i\}$ which satisfies the following properties such that $\lim_{j\to\infty}\alpha_j^{(i)}=\gamma_i$ for i=1,...,k.

$$\deg \alpha_{j}^{(i)} = m_{j}^{(i)} \le \ell \text{ and } \lim_{j \to \infty} H(\alpha_{j}^{(i)}) = \infty \quad (\ell \in \mathbb{Z}^{+})$$
 (2.1)_i

$$\left| \gamma_i - \alpha_j^{(i)} \right|_p = \frac{1}{H(\alpha_j^{(i)})^{w_i(j)}} < \frac{1}{H(\alpha_{j+1}^{(i)})^{\delta_i}}$$
 (2.2)_i

where $\lim_{j\to\infty} w_i(j) = \infty$ and some fixed numbers $\delta_i > 0$ (i = 1,...,k).

On the other hand, as equivalent to $(2.2)_i$ we can write

$$\left| \alpha_{j+1}^{(i)} - \alpha_j^{(i)} \right|_p = \frac{1}{H(\alpha_j^{(i)})^{w_i(j)}} < \frac{1}{H(\alpha_{j+1}^{(i)})^{\delta_i}} \quad (\forall 1 \le i \le k). \quad (2.3)_i$$

Now, we will show that

$$\lim_{j \to \infty} \frac{\log H(\alpha_{j+1}^{(i)})}{\log H(\alpha_{j}^{(i)})} = \infty \ (\forall 1 \le i \le k).$$

It is given that $\ell \ge \max \left\{ \deg \alpha_{j+1}^{(i)}, \deg \alpha_{j}^{(i)} \right\}$. Also, using (2.3); in Lemma 1 we write

$$\frac{c_1}{H(\alpha_{j+1}^{(i)})^{\ell-1}H(\alpha_j^{(i)})^{\ell}} < \left| \alpha_{j+1}^{(i)} - \alpha_j^{(i)} \right|_p = \frac{1}{H(\alpha_j^{(i)})^{w_i(j)}}$$

where $\left|\alpha_{j+1}^{(i)}\right|_p = p^{-h}$, $r = \min\{0, h\}$ and

$$c_1 = p^{(\ell-1)r-\ell(|h|+1)} ((2\ell)!)^{-1}.$$

Hence, we find

$$H(\alpha_j^{(i)})^{w_i(j)-\ell} < H(\alpha_{j+1}^{(i)})^{\ell-1}c_1^{-1}.$$

So, taking logarithms of both sides of the last inequality we have

$$(w_i(j) - \ell) \log H(\alpha_j^{(i)}) < (\ell - 1)(\log H(\alpha_{j+1}^{(i)}) + \log c_1^{-1})$$

or

$$\frac{(w_i(j)-\ell)}{\ell-1} < \frac{\log H(\alpha_{j+1}^{(i)})}{\log H(\alpha_j^{(i)})} + \frac{\log c_1^{-1}}{\log H(\alpha_j^{(i)})}.$$

Since $\lim_{j \to \infty} w_i(j) = \infty$ and $\lim_{j \to \infty} \frac{\log c_1^{-1}}{\log H(\alpha_j^{(i)})} = 0$ holds

$$\lim_{j \to \infty} \frac{\log H(\alpha_{j+1}^{(i)})}{\log H(\alpha_{j}^{(i)})} = \infty.$$
 (2.4)_i

Let H_j be a monotone union of $H(\alpha_j^{(i)})$ (i = 1, ..., k). Now, we are in a position to prove that

$$\lim_{j \to \infty} \sup \frac{\log H_{j+1}}{\log H_j} = \infty.$$

To this end, it is sufficient to find a subsequence $\left\{H_{j_n}\right\}$ such that

$$\lim_{n\to\infty}\frac{\log H_{j_n+1}}{\log H_{j_n}}=\infty.$$

Putting $\mu_i(n) = \frac{\log H(\alpha_{j+1}^{(i)})}{\log H(\alpha_j^{(i)})}$ where $1 \le i \le k$, $\lim_{n \to \infty} \mu_i(n) = \infty$ holds for $\forall i = 1, ..., k$.

For fixed $i \in \{1, ..., k\}$, we define subsequence H_{j_n} that every element is selected from the interval $[H(\alpha_n^{(i)}), H(\alpha_{n+1}^{(i)})]$ for $\forall n \in \mathbb{N}$ as in the following: Let $n \in \mathbb{N}$.

Case I: When $H_j = H(\alpha_n^{(i)})$ if $H_{j+1} = H(\alpha_{n+1}^{(i)})$, then, $H_{j_n} = H(\alpha_n^{(i)})$ selection is made. In this case $\frac{\log H_{j_n+1}}{\log H_{j_n}} = \mu_i(n)$ holds.

Case II: If there are at most m elements $H(\alpha_r^{(s)})$ between $H(\alpha_n^{(i)})$ and $H(\alpha_{n+1}^{(i)})$ where $m \le k-1$ and $(s \ne i, 1 \le s \le k, r \in \mathbb{N})$, i.e, $H_j = H(\alpha_n^{(i)})$ and $H_{j+m+1} = H(\alpha_{n+1}^{(i)})$, then $\mu_i(n)$ can be written as

$$\mu_i(n) = \frac{\log H(\alpha_{n+1}^{(i)})}{\log H(\alpha_n^{(i)})} = \frac{\log H(\alpha_{n+1}^{(i)})}{\log H_{j+m}} \cdot \frac{\log H_{j+m}}{\log H_{j+m-1}} \cdot ... \cdot \frac{\log H_{j+1}}{\log H(\alpha_n^{(i)})}.$$

Let $\frac{\log H_{t+1}}{\log H_t}$ denote the maximum of

$$\frac{\log H(\alpha_{n+1}^{(i)})}{\log H_{j+m}}, \frac{\log H_{j+m}}{\log H_{j+m-1}}, ..., \frac{\log H_{j+1}}{\log H(\alpha_n^{(i)})}$$

and define $H_{j_n} = H_t$, then

$$\mu_i(n) \le \left(\frac{\log H_{j_n+1}}{\log H_{j_n}}\right)^{m+1} \text{ or } \frac{\log H_{j_n+1}}{\log H_{j_n}} \ge (\mu_i(n))^{1/(m+1)} \text{ holds.}$$

Case III: If there are more than k-1 elements $H(\alpha_r^{(s)})$ between $H(\alpha_n^{(i)})$ and $H(\alpha_{n+1}^{(i)})$ where $(s \neq i, 1 \leq s \leq k, r \in \mathbb{N})$, then, there is some $\alpha_r^{(s)}$ $(s \neq i)$ such that

$$[H(\alpha_r^{(s)}), H(\alpha_{r+1}^{(s)})] \subset [H(\alpha_n^{(i)}), H(\alpha_{n+1}^{(s)})].$$

In this case the element H_{j_n} is selected in the subinterval $[H(\alpha_r^{(s)}), H(\alpha_{r+1}^{(s)})].$

- a) If there are at most k-2 elements H_j between $H(\alpha_r^{(s)})$ and $H(\alpha_{r+1}^{(s)})$ then, the element H_{j_n} is selected as in Case II.
- b) If there are more than k-2 elements H_j between $H(\alpha_r^{(s)})$ and $H(\alpha_{r+1}^{(s)})$ then, there is at least one index v $(1 \le v \le k)$ different from i and s such that

$$[H(\alpha_{\ell}^{(v)}), H(\alpha_{\ell+1}^{(v)})] \subset [H(\alpha_{r}^{(s)}), H(\alpha_{r+1}^{(s)})].$$

Now, the same discussion is considered for the interval $[H(\alpha_{\ell}^{(\nu)}), H(\alpha_{\ell+1}^{(\nu)})]$. This discussion is completed at most finitely step. So, for the selected elements H_{j_n}

$$\frac{\log H_{j_n+1}}{\log H_{j_n}} \ge (\mu_{\nu}(n))^{1/(m+1)} \quad (m < k, 1 \le \nu \le k)$$

holds and also, since $\lim_{n\to\infty} \mu_i(n) = \infty$ for $\forall 1 \le i \le k$ we write

$$\lim_{n \to \infty} \frac{\log H_{j_n+1}}{\log H_{j_n}} = \infty \quad \text{or} \quad \lim_{j \to \infty} \sup \frac{\log H_{j+1}}{\log H_j} = \infty. \tag{2.5}$$

Let j_0 be a natural number such that

$$H_j \ge \max \left\{ H(\alpha_1^{(1)}), ..., H(\alpha_1^{(k)}) \right\} \text{ for } \forall j \ge j_0.$$

We define the natural numbers $t_i(j)$ and the p-adic algebraic numbers γ_j as

$$t_i(j) = \max \left\{ v \middle| H(\alpha_v^{(i)}) \le H_j \right\} \qquad (1 \le i \le k)$$
 (2.6)_i

$$\gamma_{j} = \alpha_{0} + \alpha_{1} \alpha_{t_{1}(j)}^{(1)} + \dots + \alpha_{k} \alpha_{t_{k}(j)}^{(k)} \quad (1 \le i \le k).$$
 (2.7)

Now, for the polynomial

$$F(y, x_1, ..., x_{2k+1}) = y - x_1 - x_2 x_3 - ... - x_{2k} x_{2k+1}$$

 $F(\gamma_j, \alpha_0, ..., \alpha_{t_k(j)}^{(k)}) = 0$ holds. Applying Lemma 3 we write

$$H(\gamma_{j}) \leq 3^{2m\ell^{k} + (2k+1)m\ell^{k}} \left[H(\alpha_{0}) ... H(\alpha_{k}) \right]^{m\ell^{k}} \left[H(\alpha_{t_{1}(j)}^{(1)}) ... H(\alpha_{t_{k}(j)}^{(k)}) \right]^{m\ell^{k}}$$

where $[Q(\alpha_0, ..., \alpha_k): Q] = m$. Putting

$$c_2 = 3^{2m\ell^k + (2k+1)m\ell^k} [H(\alpha_0), ..., H(\alpha_k)]^{m\ell^k}$$

and from $(1.6)_i$ we find $H(\gamma_j) \leq c_2 H_j^{mk\ell^k}$. Since $\lim_{j \to \infty} H_j = \infty$ there is a natural number j_1 such that $j_1 \geq j_0$ and $H_j > c_2$ for $\forall j \geq j_1$. Hence, taking $\rho = mk\ell^k + 1$ we have

$$H(\gamma_j) \le H_j^{\rho} \ (\forall j \ge j_1). \tag{2.8}_i$$

We suppose that $\gamma \notin A$ (If $\gamma \in A$, the theorem holds). We approximate γ with the algebraic numbers γ_i . From $(1.2)_i$ we write

$$0 < \left| \gamma - \gamma_{j} \right|_{p} < c_{3} \max \left\{ \frac{1}{H(\alpha_{t_{1}(j)+1}^{(1)})^{\delta_{1}}}, ..., \frac{1}{H(\alpha_{t_{k}(j)+1}^{(k)})^{\delta_{k}}} \right\}$$
 (2.9)

where $c_3 = \max\{|\alpha_1|_p, ..., |\alpha_k|_p\}$. Using the definition of H_j and $(2.6)_i$ we have

$$H(\alpha_{t_i(j)+1}^{(i)}) \ge H_{j+1}(\forall 1 \le i \le k).$$
 (2.10)

With a combination of (2.9) and (2.10) we write

$$0 < \left| \gamma - \gamma_j \right|_p < c_3 \frac{1}{H_{j+1}^{\delta'}}$$

where $\delta' = \min\{\delta_1, ..., \delta_k\}$. On the other hand, since $\lim_{j \to \infty} H_j = \infty$ there is a natural number j_2 such that $j_2 \ge j_1$ and $H_{j+1}^{\delta'/2} > c_3$ for $\forall j \ge j_2$. Thus, putting $\delta = \delta'/2$

$$0 < \left| \gamma - \gamma_j \right|_p < \frac{1}{H_{j+1}^{\delta}} \quad (\forall j \ge j_2)$$
 (2.11)

holds. Taking logarithms of both sides $(2.8)_i$ we have

$$\frac{\log H(\gamma_j)}{\rho \log H_i} < 1. \tag{2.12}$$

Let us define $w(j) = \frac{\delta \log H_{j+1}}{\rho \log H_j}$. From (2.12) we obtain

$$H(\gamma_j)^{w(j)} < H_{j+1}^{\delta} \ (\forall j \ge j_2).$$
 (2.13)

So, using (2.13) in (2.11) we find that

$$0 < \left| \gamma - \gamma_j \right|_p < \frac{1}{H(\gamma_j)^{w(j)}} \quad (\forall j \ge j_2). \tag{2.14}$$

From (2.5)
$$\lim_{n \to \infty} w(j_n) = \lim_{n \to \infty} \frac{\delta \log H_{j_n+1}}{\rho \log H_{j_n}} = \infty$$
 and by (2.14)

$$0 < |\gamma - \gamma_{j_n}|_p < \frac{1}{H(\gamma_{j_n})^{w(j_n)}}.$$
 (2.15)

Thus, we have $\gamma \in U$.

Theorem 4. In Theorem 3, if $\lim_{j\to\infty} \frac{\log H_{j+1}}{\log H_j} = \infty$ and

$$r = \liminf_{j \to \infty} \text{inf der} \gamma_j \text{ , then } \gamma = \alpha_0 + \alpha_1 \gamma_1 + ... + \alpha_k \gamma_k \in A \cup U_r \,.$$

Proof: If $\gamma \in A$ the statement is clear. Let $\gamma \notin A$. We prove that $\gamma \in U_r$. In (2.8), we replace j+1 for j and write

$$H(\gamma_{j+1}) \le H_{j+1}^{\rho}$$
. (2.16)

When (2.11) is used

$$0 < \left| \gamma - \gamma_{j} \right|_{p} < \frac{1}{H(\gamma_{j+1})^{\delta/p}} \quad (\forall j \ge j_{2})$$
 (2.17)

 $\begin{array}{ll} \text{holds true. Since } \lim_{j \to \infty} \frac{\log H_{j+1}}{\log H_{j}} = \infty & \lim_{j \to \infty} w(j) = \lim_{n \to \infty} \frac{\delta \log H_{j+1}}{\rho \log H_{j}} = \infty & \text{and by} \\ \\ \text{(2.14)} & 0 < \left| \gamma - \gamma_{j} \right|_{p} < \frac{1}{H(\gamma_{j})^{w(j)}} & \text{holds.} \end{array}$

Now, we shall prove that $\lim_{j\to\infty} H(\gamma_j) = \infty$. From (2.11)

$$\left|\gamma_{j+1} - \gamma_{j}\right|_{p} = \left|\gamma_{j+1} - \gamma_{j} + \gamma - \gamma\right|_{p} < \max\left\{\left|\gamma_{j+1} - \gamma\right|_{p}, \left|\gamma - \gamma_{j}\right|_{p}\right\} < \frac{1}{H_{j+1}^{\delta}}$$

holds for $\forall j \geq j_2$. A combination of this inequality and Lemma 1 gives

$$\frac{c_2}{H(\gamma_{j+1})^{\ell}H(\gamma_j)^{\ell}} < \left| \gamma_{j+1} - \gamma_j \right|_p < \frac{1}{H^{\delta}_{j+1}} (\forall j \ge j_2) \qquad (2.18)$$

or

$$c_2 H_{j+1}^{\delta} < H(\gamma_{j+1})^{\ell} H(\gamma_j)^{\ell} (\forall j \ge j_2).$$
 (2.19)

Thus, from (2.19) and $(2.8)_i$ we find

$$c_2 H_{j+1}^{\delta} < H(\gamma_{j+1})^{\ell} \, H(\gamma_j)^{\ell} < H(\gamma_{j+1})^{\ell} \, H_j^{\ell p} \ \ (\forall j \geq j_2). \eqno(2.20)$$

Since $\lim_{j\to\infty}\frac{\log H_{j+1}}{\log H_j}=\infty$ there is a natural number j_3 such that $j_3\geq j_2$ and

$$H_j^{2\ell\rho} < c_2 H_j^{\delta}. \tag{2.21}$$

From (2.20) and (2.21) we get

$$H_j^{2\ell\rho} < c_2 H_j^\delta < H(\gamma_{j+1})^\ell H(\gamma_j)^\ell < H(\gamma_{j+1})^\ell H_j^{\ell\rho}$$

and so we find

$$H_{j}^{\rho} < H(\gamma_{j+1}) \ (\forall j \ge j_3).$$
 (2.22)

On the other hand, since $\lim_{i\to\infty} H_i = \infty$ it is true that

$$\lim_{j\to\infty}H(\gamma_{j+1})=\lim_{j\to\infty}H(\gamma_j)=\infty\,.$$

Thus, the conditions (1), (2) and (3) of Theorem 1 are satisfied, then, we have $\gamma \in U_r$ where $r = \lim_{j \to \infty} \inf der \gamma_j$.

Theorem 5. If $\gamma_1 \in U$ and $\gamma_2 \in U^s$ in Q_P then $\gamma_1 + \gamma_2$, $\gamma_1 \gamma_2 \in A \cup U$.

Proof: Suppose that the number γ_1 belongs to subclass U_m . From Definition 1 there are infinitely many p-adic algebraic numbers $\{\alpha_i\}$ such that

$$\left|\gamma_1 - \alpha_i\right|_p < \frac{1}{H(\alpha_i)^{w_i(i)}}$$

where $\limsup_{i \to \infty} w_1(i) = \infty$ and $\deg \alpha_i = m$. Since $\limsup_{i \to \infty} w_1(i) = \infty$ there is a subsequence $\left\{ w_1(i_k) \right\}$ of $\left\{ \alpha_i \right\}$ such that $\lim_{k \to \infty} w_1(i_k) = \infty$ and

$$\left| \gamma_1 - \alpha_{i_k} \right|_p < \frac{1}{H(\alpha_{i_k})^{w_1(i_k)}} \qquad . \tag{3.1}$$

On the other hand, since $\gamma_2 \in U^s$ from Definition 2 there are infinitely many p-adic algebraic numbers $\{\beta_k\}$ which satisfy the following properties

$$\deg \beta_k = n_k \le \ell \quad (\ell \in Z^+) \text{ and } \lim_{k \to \infty} H(\beta_k) = \infty$$
 (3.2)

and

$$\left|\gamma_{2} - \beta_{k}\right|_{p} < \frac{1}{H(\beta_{k})^{w_{2}(k)}} < \frac{1}{H(\beta_{k+1})^{\delta 1}}$$
 (3.3)

where $\lim_{k\to\infty} w_2(k) = \infty$ and some fixed $\delta_1 > 0$. Also, we can write

$$\begin{aligned} \left| \beta_{k+1} - \beta_k \right|_p &= \left| \beta_{k+1} - \gamma_2 + \gamma_2 - \beta_k \right|_p \\ &\leq \max \left\{ \left| \beta_{k+1} - \gamma_2 \right|_p, \left| \gamma_2 - \beta_k \right|_p \right. \end{aligned}$$

and using (3.3) we find

$$\left|\beta_{k+1} - \beta_k\right|_p < \max\left\{\frac{1}{H(\beta_{k+1})^{w_2(k+1)}}, \frac{1}{H(\beta_k)^{w_2(k)}}\right\}.$$

From $H(\beta_k) < H(\beta_{k+1})$

$$\left|\beta_{k+1} - \beta_k\right|_p < \frac{1}{H(\beta_k)^{w(k)}} \tag{3.4}$$

holds where $w(k) = \min\{w_2(k), w_2(k+1)\}$. A combination of (3.4) and Lemmal gives

$$\frac{c_1}{H(\beta_{k+1})^n H(\beta_k)^n} < |\beta_{k+1} - \beta_k|_p < \frac{1}{H(\beta_k)^{w(k)}}$$

or

$$H(\beta_k)^{w(k)-n} < \frac{1}{c_1} H(\beta_{k+1})^n$$
.

Since $\lim_{k\to\infty} H(\beta_k) = \infty$ there is a natural number k_0 such that $H(\beta_{k+1}) > \frac{1}{c_1}$ for $\forall k \ge k_0$. Hence we can write

$$H(\beta_k)^{w(k)-n} < H(\beta_{k+1})^{n+1}$$

for $\forall k \ge k_0$. Taking the logarithms of both sides of the last inequality we write

$$(w(k)-n)<(n+1)\frac{\log H(\beta_{k+1})}{\log H(\beta_k)}.$$

Thus, since $\lim_{k\to\infty} w(k) = \infty$

$$\lim_{k \to \infty} \frac{\log H(\beta_{k+1})}{\log H(\beta_k)} = \infty \tag{3.5}$$

is valid.

Let us show that $\gamma_1 + \gamma_2 \in A \cup U$. If $\gamma_1 + \gamma_2 \in A$, then, the statement is clear. We assume that $\gamma_1 + \gamma_2 \notin A$. Now, we approximate

the number $\gamma_1 + \gamma_2$ with the p-adic algebraic numbers γ_k which is selected in the intervals $[H(\alpha_{i_k}), H(\alpha_{i_k})^{w_1(i_k)}]$ as in the following cases.

Case I: If there is no element $H(\beta_{\nu})$ between $H(\alpha_{i_k})$ and $H(\alpha_{i_k})^{w_1(i_k)}$ then the p-adic number is defined as

$$\gamma_k = \alpha_{i_k} + \beta_{t(k)}$$

where $t(k) = \max \{ v \mid H(\alpha_v) \le H(\alpha_{i_k}) \}$. In this case

$$H(\beta_{t(k)}) \le H(\alpha_{i_k}) \le H(\alpha_{i_k})^{w_1(i_k)}$$
 (3.6)

is valid. From (3.1) and (3.3) we write

$$\left|\gamma_1 + \gamma_2 - \gamma_k\right|_p \le \max\left\{\frac{1}{H(\alpha_{i_k})^{w_1(i_k)}}, \frac{1}{H(\beta_{t(k)+1})\delta}\right\}$$

and from (3.6) we can write $H(\alpha_{i_k})^{\delta w_1(i_k)} \le H(\beta_{t(k)+1})^{\delta}$. Thus, we have

$$\left|\gamma_1 + \gamma_2 - \gamma_k\right|_p \le \frac{1}{H(\alpha_{i_k})^{\mu(k)}} \tag{3.7}$$

where $\mu(k) = \min\{w_1(i_k), \delta w_1(i_k)\}$.

It satisfies $F(\gamma_k, \alpha_{i_k}, \beta_{t(k)}) = 0$ for the polynomial

$$F(y, x_1, x_2) = y - x_1 - x_2$$

and applying Lemma 3

$$H(\gamma_k) \le 3^{4\ell^2} H(\alpha_{i_k})^{\ell^2} H(\beta_{t(k)})^{\ell^2}$$

holds where $\ell \ge \max\{m, n\}$. Using (3.6) in this inequality we have

$$H(\gamma_k) \le 3^{4\ell^2} H(\alpha_{i_k})^{2\ell^2}.$$

Since $\lim_{k\to\infty} H(\alpha_{i_k}) = \infty$ there is a natural number k_1 such that $k_1 \ge k_0$ and $H(\alpha_{i_k}) > 3^{4\ell^2}$ for $\forall k \ge k_1$. Hence, taking as $p = 2\ell^2 + 1$ we have

$$H(\gamma_k) \le H(\alpha_{i_k})^p \ (\forall k \ge k_1). \tag{3.8}$$

So, using (3.8) in (3.7) we find

$$\left|\gamma_1 + \gamma_2 - \gamma_k\right|_p \le \frac{1}{H(\gamma_k)^{\mu(k)/p}} (\forall k \ge k_1). \tag{3.9}$$

Case II: If there is only one element $H(\beta_{\nu})$ between $H(\alpha_{i_k})$ and $H(\alpha_{i_k})^{w_1(i_k)}$, then the number γ_k can be selected in the following manner: Let $H(\beta_{t(k)})$ denote the element between $H(\alpha_{i_k})$ and $H(\alpha_{i_k})^{w_1(i_k)}$. Thus,

$$H(\alpha_{i_k}) < H(\beta_{t(k)}) < H(\alpha_{i_k})^{w_1(i_k)}$$

holds. On the other hand, it can be written that

$$w_1(i_k) = \frac{\log H(\alpha_{i_k})^{w_1(i_k)}}{\log H(\alpha_{i_k})} = \frac{\log H(\alpha_{i_k})^{w_1(i_k)}}{\log H(\beta_{t(k)})} \cdot \frac{\log H(\beta_{t(k)})}{\log H(\alpha_{i_k})} \, .$$

(i) If
$$\frac{\log H(\alpha_{i_k})^{w_l(i_k)}}{\log H(\beta_{t(k)})} \ge \frac{\log H(\beta_{t(k)})}{\log H(\alpha_{i_k})}$$
, then, it follows that

$$w_1(i_k) \le \left(\frac{\log H(\alpha_{i_k})^{w_1(i_k)}}{\log H(\beta_{t(k)})}\right)^2$$
 and so

$$\frac{\log H(\alpha_{i_k})^{w_1(i_k)}}{\log H(\beta_{t(k)})} \ge \sqrt{w_1(i_k)}$$
 (3.10)

holds. Let be $\gamma_k = \alpha_{i_k} + \beta_{t(k)}$. From (3.1) and (3.3) it follows that

$$\left| \gamma_1 + \gamma_2 - \gamma_k \right|_p \le \max \left\{ \frac{1}{H(\alpha_{i_k})^{w_1(i_k)}}, \frac{1}{H(\beta_{t(k)})^{w_2(t(k))}} \right\}.$$

Using $\log H(\alpha_{i_k})^{w_1(i_k)} = \log H(\beta_{t(k)})^{w_1(i_k)} \frac{\log H(\alpha_{i_k})}{\log H(\beta_{t(k)})}$ and (3.10) it follows that

$$\left| \gamma_1 + \gamma_2 - \gamma_k \right|_p \leq \max \left\{ \frac{1}{H(\beta_{t(k)})^{\sqrt{w_1(i_k)}}}, \frac{1}{H(\beta_{t(k)})^{w_2(t(k))}} \right\}.$$

Putting $\mu(k) = \min \left\{ \sqrt{w_1(i_k)}, \delta w_2(t(k)) \right\}$ we have

$$\left| \gamma_1 + \gamma_2 - \gamma_k \right|_p \le \frac{1}{H(\beta_{t(k)})^{\mu(k)}}.$$
 (3.11)

It satisfies $F(\gamma_k, \alpha_{i_k}, \beta_{t(k)}) = 0$ for the polynomial $F(y, x_1, x_2) = y - x_1 - x_2$ and applying Lemma 3 and using $H(\alpha_{i_k}) < H(\beta_{t(k)})$ it follows that

$$H(\gamma_k) \le 3^{4\ell^2} H(\beta_{t(k)})^{2\ell^2}$$

where $\ell \ge \max\{m,n\}$. Since $\lim_{k\to\infty} H(\beta_{t(k)}) = \infty$ there is a natural number k_2 such that $k_2 \ge k_1$ and $H(\beta_{t(k)}) > 3^{4\ell^2}$ for $\forall k \ge k_2$. Thus, we have

$$H(\gamma_k) \le H(\beta_{t(k)})^p \tag{3.12}$$

for $\forall k \ge k_2$ where $p = 2\ell^2 + 1$. Using (3.12) in (3.11) we have

$$\left|\gamma_1 + \gamma_2 - \gamma_k\right|_p \le \frac{1}{H(\gamma_k)^{\mu(k)/p}} \ (\forall k \ge k_2). \tag{3.13}$$

(ii) If
$$\frac{\log H(\beta_{t(k)})}{\log H(\alpha_{i_k})} > \frac{\log H(\alpha_{i_k})^{w_1(i_k)}}{\log H(\beta_{t(k)})}$$
, then it follows that

$$\frac{\log H(\beta_{t(k)})}{\log H(\alpha_{i_k})} \ge \sqrt{w_1(i_k)} . \tag{3.14}$$

Let be $\gamma_k = \alpha_{i_k} + \beta_{t(k)-1}$. A combination of (3.1) and (3.3) gives

$$\left|\gamma_1+\gamma_2-\gamma_k\right|_{p,\leq} \max\left\{\frac{1}{H(\alpha_{i_k})^{w_1(i_k)}},\frac{1}{H(\beta_{t(k)})^{\delta}}\right\}.$$

Using $\log H(\beta_{t(k)})^{\delta} = \log H(\alpha_{i_k})^{\delta \log H(\beta_{t(k)})/\log H(\alpha_{i_k})}$ and (3.4) it follows that

$$\left|\gamma_1 + \gamma_2 - \gamma_k\right|_p \le \max\left\{\frac{1}{H(\alpha_{i_k})^{w_1(i_k)}}, \frac{1}{H(\alpha_{i_k})^{\delta\sqrt{w_1(i_k)}}}\right\}.$$

Putting $\mu(k) = \min \left\{ w_1(i_k), \delta \sqrt{w_1(i_k)} \right\}$, we find

$$\left|\gamma_1 + \gamma_2 - \gamma_k\right|_p \le \frac{1}{H(\alpha_{i_k})^{\mu(k)}}.$$
(3.15)

Using (3.12) in (3.15), we have

$$\left|\gamma_1 + \gamma_2 - \gamma_k\right|_p \le \frac{1}{H(\gamma_k)^{\mu(k)/p}} \ (\forall k \ge k_2). \tag{3.16}$$

Case III: If there are at least two elements $H(\beta_{\nu})$ between $H(\alpha_{i_k})$ and $H(\alpha_{i_k})^{w_1(i_k)}$, then we define the number γ_k as

$$\gamma_k = \alpha_{i_k} + \beta_{t(k)}$$

where $t(k) = \min \{ v \mid H(\alpha_v) \ge H(\alpha_{i_k}) \}$. In this case, it follows that

$$H(\alpha_{i_k}) \le H(\beta_{t(k)}) < H(\beta_{t(k)+1}) \le H(\alpha_{i_k})^{w_1(i_k)}$$
.

A combination of (3.1) and (3.3) gives

$$\left| \gamma_1 + \gamma_2 - \gamma_k \right|_p \le \max \left\{ \frac{1}{H(\alpha_{i_k})^{w_1(i_k)}}, \frac{1}{H(\beta_{t(k)})^{w_2(t(k))}} \right\}$$

and since $H(\alpha_{i_k})^{w_1(i_k)} > H(\beta_{t(k)+1})$

$$\left|\gamma_1 + \gamma_2 - \gamma_k\right|_p \le \max\left\{\frac{1}{H(\beta_{\iota(k)+1})}, \frac{1}{H(\beta_{\iota(k)})^{w_2(\iota(k))}}\right\}.$$

can be written. If $H(\beta_{t(k)+1}) = H(\beta_{t(k)})^{\log H(\beta_{t(k)+1})/\log H(\beta_{t(k)})}$ is considered

$$\left| \gamma_1 + \gamma_2 - \gamma_k \right|_p \le \frac{1}{H(\beta_{t(k)})^{\mu(k)}}$$
 (3.17)

holds where $\mu(k) = \min \left\{ \log H(\beta_{t(k)+1}) / \log H(\beta_{t(k)}), w_2(i_k) \right\}$. Since the inequality (3.12) holds in Case III and using (3.17) we have

$$\left|\gamma_1 + \gamma_2 - \gamma_k\right|_p \le \frac{1}{H(\gamma_k)^{\mu(k)/p}} \ (\forall k \ge k_2). \tag{3.18}$$

There are infinitely many disjoint intervals

$$[H(\alpha_{i_k}), H(\alpha_{i_k})^{w_1(i_k)}]$$
 since $\lim_{k \to \infty} H(\alpha_{i_k}) = \infty$.

Thus, for the numbers γ_k which are selected for three cases it holds

$$\left|\gamma_1 + \gamma_2 - \gamma_k\right|_p \le \frac{1}{H(\gamma_k)^{\mu(k)/p}}$$

where $\lim_{k\to\infty} \mu(k) = \infty$. So that $\gamma_1 + \gamma_2 \in U$.

On the other hand, it can be easily show that $\gamma_1 \gamma_2 \in A \cup U$ with the same method. In fact, we will only consider the first case.

Case I: If there is no element $H(\beta_{\nu})$ between $H(\alpha_{i_k})$ and $H(\alpha_{i_k})^{w_1(i_k)}$ then, the p-adic number is defined as $\gamma_k' = \alpha_{i_k} \cdot \beta_{t(k)}$

where $t(k) = \max \{ v \mid H(\alpha_v) \le H(\alpha_{i_k}) \}$. From (3.1) and (3.3) it follows

$$\left| \gamma_{1}.\gamma_{2} - \gamma'_{k} \right|_{p} = \left| \gamma_{1}.\gamma_{2} - \alpha_{i_{k}} \beta_{t(k)} + \gamma_{1} \beta_{t(k)} - \gamma_{1} \alpha_{i_{k}} \right|_{p}$$

$$\leq \max \left\{ \frac{\left| \gamma_{1} \right|_{p}}{H(\beta_{t(k)+1})^{\delta}}, \frac{\left| \beta_{t(k)} \right|_{p}}{H(\alpha_{i_{k}})^{w_{1}(i_{k})}} \right\}$$

and also, using $H(\alpha_{i_k})^{w_1(i_k)} \le H(\beta_{t(k)+1})$

$$\left|\gamma_{1}.\gamma_{2}-\gamma_{k}'\right|_{p} \leq \max\left\{\frac{\left|\gamma_{1}\right|_{p}}{H(\alpha_{i_{k}})^{\delta w_{1}(i_{k})}}, \frac{\left|\beta_{t(k)}\right|_{p}}{H(\alpha_{i_{k}})^{w_{1}(i_{k})}}\right\}.$$

$$(3.19)$$

holds. On the other hand, there is a natural number k_0 such that

$$\left|\beta_{t(k)}\right|_p = \left|\beta_{t(k_0)}\right|_p$$

for $\forall k \ge k_0$. Let be $C = \max\{A, B\}$ where $A = |\gamma_1|_p$ and $B = |\beta_{t(k_0)}|_p$. Using these notations in (3.19), we write

$$\left| \gamma_1 \cdot \gamma_2 - \gamma'_k \right|_p \le \frac{C}{H(\alpha_{i_k})^{\mu(k)}}$$

where $\mu(k)=\min\left\{\delta w_1(i_k),\,w_1(i_k)\right\}$. Since $\lim_{k\to\infty}H(\alpha_{i_k})=\infty$ there is a natural number \mathbf{k}_1 such that $\mathbf{k}_1\geq\mathbf{k}_0$ and $H(\alpha_{i_k})>C$ for $\forall\,\mathbf{k}\geq\mathbf{k}_1$. So,

$$\left| \gamma_{1}.\gamma_{2} - \gamma'_{k} \right|_{p} \le \frac{1}{H(\alpha_{i_{k}})^{\mu(k)-1}} \ (\forall k \ge k_{1})$$
 (3.20)

holds. It satisfies $F(\gamma_k', \alpha_{i_k}, \beta_{t(k)}) = 0$ for the polynomial $F(y, x_1, x_2) = y - x_1 x_2$ and applying Lemma 3 and using $H(\beta_{t(k)}) \le H(\alpha_{i_k})$, it follows that

$$H(\gamma'_k) \le 3^{4\ell^2} H(\alpha_{i_k})^{2\ell^2}$$
.

Since $\lim_{i\to\infty} H(\alpha_{i_k}) = \infty$ there is a natural k_2 such that $k_2 \ge k_1$ and $H(\alpha_{i_k}) > 3^{4\ell^2}$. Thus, putting $p = 2\ell^2 + 1$, we have $H(\gamma'_k) \le H(\alpha_{i_k})^p$ for $\forall k \ge k_2$. In this inequality using in (3.20) we find

$$\left| \gamma_1 \cdot \gamma_2 - \gamma'_k \right|_p \le \frac{1}{H(\alpha_{i_k})^{(\mu(k) - 1)/p}} \quad (\forall k \ge k_2). \tag{3.21}$$

The other cases can be treated with the same method. Finally, we have $\gamma_1\gamma_2\in A\cup U$.

In Theorem 5 if we take $\gamma_2 \in U$ instead of $\gamma_2 \in U^s$, the theorem fails to be true. So that if $\gamma_1, \gamma_2 \in U$, then, the number $\gamma_1 + \gamma_2$ does not necessarily belong to $A \cup U$. Now, to prove this, we first prove the following theorem in Q_p which is proved for real numbers by Erdös [6].

Theorem 6. Let x a p-adic number. Then, there are some Liouville numbers γ_1 , γ_2 such that $x = \gamma_1 + \gamma_2$.

Proof: If x is a rational number then the statement is clear. In fact, for any Liouville number γ_1 , the number $\gamma_2 = x - \gamma_1$ is a Liouville number and $x = \gamma_1 + \gamma_2$ holds.

We assume that x be non-rational p-adic number and $x = \sum_{k=0}^{\infty} a_k p^k$ where $a_k = 0, 1, ..., p-1$. We define the numbers γ_1, γ_2 as

$$\gamma_1 = \sum_{k=0}^{\infty} b_k p^k$$
 and $\gamma_2 = \sum_{k=0}^{\infty} c_k p^k$

where for $n! \le k < (n+1)!$

$$b_k = a_k$$
 and $c_k = 0$ $(n = 1, 3, 5, ...)$

$$b_k = 0$$
 and $c_k = a_k$ $(n = 0, 2, 4, ...)$

i.e.,

$$\gamma_1 = 0 + a_1 p^1 + 0 p^2 + \dots + 0 p^5 + a_6 p^6 + \dots + a_{23} p^{23} + 0 p^{24} + \dots$$
$$\gamma_2 = a_0 + 0 p^1 + a_2 p^2 + \dots + a_5 p^5 + 0 p^6 + \dots + 0 p^{23} + a_{24} p^{24} + \dots$$

- a) If there are at most finitely many numbers b_k distinct from 0, then, $\gamma_1 \in Q$ and $\gamma_2 \in U_1$ will be infinitely many numbers c_k distinct from 0. Thus, $\gamma_1 \in Q$ and $x = \gamma_1 + \gamma_2 \in U_1$. Moreover, $\frac{x}{2} \in U_1$ and $x = \frac{x}{2} + \frac{x}{2}$.
- b) If there are infinitely many numbers b_k and c_k distinct from 0, then the numbers γ_1 and γ_2 are Liouville numbers. Now, we shall prove this.

Put $s_n = \sum_{k=0}^n b_k p^k$. We shall approximate γ_1 by algebraic numbers $s_{(2n)!-1}$. It follows that

$$\begin{aligned} \left| \gamma_1 - s_{(2n)!-1} \right|_p &= \left| a_{(2n+1)!} p^{(2n+1)!} + a_{(2n+1)!+1} p^{(2n+1)!+1} + \dots \right|_p \\ &= \left| p^{(2n+1)!} \right|_p \left| a_{(2n+1)!} + a_{(2n+1)!+1} p + \dots \right|_p \end{aligned}$$

and so we have

$$\left|\gamma_1 - s_{(2n)!-1}\right|_p \le \left(\frac{1}{p^{(2n)!}}\right)^{2n+1} = \frac{1}{H(s_{(2n)!-1})^{2n+1}}.$$

Since $\lim_{n\to\infty} (2n+1) = \infty$ the number γ_1 is a p-adic Liouville number.

With the same method, putting $t_n = \sum_{k=0}^n c_k p^k$ it is possible to approximate γ_2 by $t_{(2n-1)!-1}$. It follows that

$$\left| \gamma_1 - t_{(2n-1)!-1} \right|_p \le \left(\frac{1}{p^{(2n-1)!}-1} \right)^{2n} = \frac{1}{H(t_{(2n-1)!-1})^{2n}}$$

and so the number γ_2 is a p-adic Liouville number.

Let be $x=p^{\alpha}\sum_{k=0}^{\infty}a_{k}\,p^{k}$ where $\alpha\in\mathbb{Z}$. From the first part of the proof there are p-adic Liouville numbers γ_{1} , γ_{2} such that $x=p^{\alpha}(\gamma_{1}+\gamma_{2})$. Then, $p^{\alpha}\gamma_{1}$ and $p^{\alpha}\gamma_{2}$ are Liouville numbers that satisfy $x=p^{\alpha}\gamma_{1}+p^{\alpha}\gamma_{2}$.

Finally, for every $x\in Q_p$ there are $\gamma_1,\,\gamma_2\in U_1$ such that $x=\gamma_1+\gamma_2$.

Hence, in the Theorem 5 if we replace the condition $\gamma_2 \in U^s$ with the condition $\gamma_2 \in U$, the theorem fails to be true. Since we know that there are p-adic numbers not belonging to the classes A and U by [13], for any number $x \notin A \cup U$ ($x \in Q_p$) there are numbers $\gamma_1, \gamma_2 \in U_1$ such that $x = \gamma_1 + \gamma_2$ by Theorem 6. If the Theorem 5 would be true, the number x would have belonged to $A \cup U$. But this is impossible since $x \notin A \cup U$.

We can give a result for Theorem 5.

Corollary 1. Let $\xi \in U$, $\gamma_1, ..., \gamma_n \in U^s$ and $n \in \mathbb{N}$. Then,

a)
$$\xi + \sum_{k=1}^{n} \gamma_k \in A \cup U$$
,

b)
$$\xi \cdot \prod_{k=1}^{n} \gamma_k \in A \cup U$$
.

Proof: We shall prove this result with Mathematical. Induction.

For n = 1 from Theorem 5 it holds $\xi + \gamma_1$, $\xi \cdot \gamma_1 \in A \cup U$.

Let the statement be true for any number n, i.e.;

$$\xi + \sum_{k=1}^{n} \gamma_k \in A \cup U$$
 and $\xi \cdot \prod_{k=1}^{n} \gamma_k \in A \cup U$.

Now we shall prove the statement for n+1.

If
$$\xi + \sum_{k=1}^{n} \gamma_k \in A$$
 and $\xi \cdot \prod_{k=1}^{n} \gamma_k \in A$ it is clear that

$$\xi + \sum_{k=1}^{n} \gamma_k + \gamma_{n+1} = \xi + \sum_{k=1}^{n+1} \gamma_k \in U^s \subset U$$

for
$$\gamma_{n+1} \in U^s$$
 and $\xi \cdot \sum_{k=1}^n \gamma_k \cdot \gamma_{n+1} = \xi \cdot \sum_{k=1}^{n+1} \gamma_k \in U^s \subset U$ holds..

We assume that $\xi + \sum_{k=1}^n \gamma_k \in U$ and $\xi \cdot \prod_{k=1}^n \gamma_k \in U$. From Theorem 5 we obtain

$$\xi + \sum_{k=1}^{n} \gamma_k + \gamma_{n+1} = \xi + \sum_{k=1}^{n+1} \gamma_k \in A \cup U$$

and

$$\xi \cdot \sum_{k=1}^{n} \gamma_{k} \cdot \gamma_{n+1} = \xi \cdot \sum_{k=1}^{n+1} \gamma_{k} \in A \cup U$$
.

References

- [1] (1992) ALNIAÇIK, K. On semi-strong U-numbers. Acta Aritmatica LX.4, 349 358.
- [2] (1998) ALNIAÇIK, K. The points on curves whose coordinates are *U*-numbers. Rendiconti di Matematica Serie VII Vo. 18, 649 653.
- [3] (1991) ALNIAÇIK, K. On p-Adic U_m -Numbers. İstanbul Ün. Fen Fak. Mat. Der. 50. 1 17.
- [4] (1996) DURU, H. On Semi-Strong p-Adic U-Numbers. (to appear in İstanbul Ün. Fen Fak. Mat. Der.
- [5] (1961)ERDÖS, P. Representation of real numbers as sums and products of Liouville numbers. Michigan Math. J. 9, 59 60.

- [6] (1973) İÇEN, O.Ş. Anhang zu den Arbeiten "Über die Funktionswerte der padisch elliptischen Funktionen I und II". Revue de la Fac. de Sci. de I'Universite d' Istanbul, Ser. A 8, 25 – 35.
- [7] (1939) KOKSMA, J.F. Über die Mahlersche Klasseneinteilung der transzendenten Zahlen und die Approximation komplexer durch algebraische Zahlen. Monatshefte Math. Physik 48, 176 189.
- [8] (1953) LEVEQUE, W.J. On Mahler's *U* Numbers. London Math. Soc., 220 229.
- [9] (1989) LONG, X.X. Mahler's Classification of p-Adic Numbers. Pure Apply. Math. 5, 73 80.
- [10] (1932) MAHLER, K. Zur Approximation der Exponentialfunktion und des Logarithmus I. J. Reine Angew. Math. 166, 137 150.
- [11] (1935) MAHLER, K. Über eine Klassen-Einteilung der p-adischen Zahlen. Mathematica (Leiden) 3, 177 185.
- [12] (1934) MORRISON, J.F. Approximation of p-Adic Numbers By Algebraic Numbers of Bounded Degree. Journal of Number Theory 10, 334 350.
- [13] (1981) SCHLICKEWEI, H.P. p-Adic T-Numbers Do Exist. Acta Aritmatica XXXIX, 181 191.
- [14] (1960) WIRSING. E. Approximation mit Algebraischen Zahlen Beschränkten Grades. J. Reine Angew. Math. 206, 67 77.

HAMZA MENKEN
Marmara Üniversitesi
Fen Edebiyat Fakültesi
Matematik Bölümü 81040
Göztepe/Istanbul –TURKEY
E-mail: hmenken@marun.edu.tr