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Abstract: Numerical simulation of a very small amplitude and high frequency sound
wave superimposed on steady flow in a quasi-one dimensional convergent-divergent
nozzle is performed using the optimized 7-point central DRP scheme with artificial
damping terms. We use both the characteristic and radiation boundary conditions for the
boundary treatment. This study contains two different cases; where is no shock in the
nozzle, and in the second a normal shock is considered in the divergent section of the
nozzle. The acoustic-shock wave interaction is considered.

1- Introduction

Aeroacoustics is the part of fluid dynamics, which is concerned,
with the study of all aspects of sound generation and propagation by
unsteady flows. In fluid field, noise (sound) is generated by time-
dependent fluctuations associated with pressure fluctuations. These
pressure fluctuations propagate for long distances to the far field
producing the radiated sound (acoustic field).

Reduction of noise is a very serious matter in all aspects of our life.
It is a critical point in a wide range of military applications such as ships
and submarines operation and object detection. It is important matter in
many industrial applications including turbo-machinery, rotorcraft and jet
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engines, also, in the civil life and according to the new standard level of
allowable noise in the urbane areas.

Computational aeroacoustics is a relatively new and rapidly
growing field of research that combines the traditional disciplines of
aeroacoustics and computational fluid dynamic. One of the main goals of
this new field is to employ the tremendous progress in the computational
. techniques to overcome the problem of sound (noise) emission from
aircraft engines and the other transportation vehicles. Acoustic-shock
waves interaction is one of the challenges of the computational
aeroacoustics, where the considered numerical method must capture the
shock wave and successfully preserve the sound waves that have a very
high frequency.

In this work, we perform numerical simulation of a very small
amplitude acoustic wave that incident on the inlet of quasi-one
dimensional convergent-divergent nozzle. In the solution procedure we
employed the optimized high-order 7-points central DRP scheme [1] for
spatial derivatives approximations and the optimized four-level time
advancing scheme of Adams-Bashforth. The DRP scheme is a non-
dissipative scheme where it has a very little dissipation, so, for nonlinear
and wave propagation problems it must be combined with an explicit
numerical damping terms. We use additional damping terms according to
the damping model developed by Tam et al [2,3]. Through the next
sections we present the numerical solution of the considered problem
with different boundary treatments and discuss the effect of these

treatments on the amount of damping needed to suppress the spurious
waves.

2- Benchmark Problém

The considered problem is selected from the workshop on
benchmark problem [4]. In this problem, the amplitude of the incident
waves is specified to be in the order of 10 times the dynamic pressure
that is based on the speed of sound of the incoming flow. The area of the
considered nozzle is given by the following function

146



134 , —200< x<— 100
Alx) = 117—17005(%) , —100<x<19 (1)

97.2+0.3x . 19<x<80

Where, —200 < x <80 is the computational domain.

The governing equations are the quasi-one dimensional Euler
equations, which are casted as follows:
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The equation of state is
1
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where p,u,p and E are density, velocity, pressure and the total specific
energy respectively. y is the ratio of specific heats where it has the
constant value 1.4.Upstream the nozzle (x<-200), the incoming
acoustic wave is specified by

u
X
=|— |+|l|eSinjow| ———t 4
Yo, 1

147



where:

M =0.5 1is the Mach number.

£=10"" is the amplitude of the acoustic waves.
@ =0.17 1is the angular frequency of the acoustic waves.

It is important to use a conservative form of the governing
equations. Therefore we replace the primitive variable group ( p,u,p ) by
the conservative variable group (p,pu,pE) through the governing
equations (2) and the equation of state (3). Since the nozzle cross
sectional areaA(x) is independent of time, and for the governing

equations to be easy to use with the time advancing numerical schemes
we do some algebraic procedures and then write the governing equations
in the conservative form as follows:

op , 2pu) , (pu) dA_,
ot ox | A dx

(5.2)

M+i(3_;1 (’OZ)Z +(7/—1)(pE)]+('07L2—2—%=0 (5.b)

2-1 Normal Shock

The normal shock represents a sudden, almost discontinuous
change in fluid properties, which takes place in the direction of the flow.
From the thermodynamics point of view, the shock process is irreversible
and adiabatic. The second law of thermodynamics, for an irreversible
process is dS ) O Q/T, however, for a shock process § Q =0, hence
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dS ) 0, which means that the entropy must increase across the shock.
From the physical standpoint, the flow ahead of a normal shock wave
must be supersonic (Mach number must exceed the unity). According to
Prandtl relation the flow behind the normal shock wave must be subsonic
(Mach number less than the unity). It is important to mention that shock
is a very thin region so that, it can occur in a varying area ducts such as
convergent-divergent nozzles.

The normal shock equations can be found in any textbook of gas
dynamics. For isentropic gas with constant specific heats, consider M, is
the Mach number upstream the shock (pre-shock Mach number) and M,

is the Mach number downstream the shock (post-shock Mach number).
John [5] has described the normal shock equations as functions of M,

and the constant ratio of specific heats y as follows:

2
M+ 2.

-1 2y M -1
M22:—-2—7/_’ P2 =D Sy (6)
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2-2 Acoustic-Shock Waves Interactions

Aeroacoustics problems are concerned with aircraft’s noise such as
jet noise and sonic boom. Thus, for good performance aspects of aircraft
design it is important to know noise sources and try to reduce them. One
of the important sources of the aircraft’s noise is shock wave. Shock
waves can be formed in jet flows, jet engines, on airfoils and in
supersonic combustion inlets. The presence of the shock waves has
strong effect on the noise generation. The effects of shock waves on
acoustic waves and correspondingly, effects of acoustic waves on shocks
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(i.e. oscillations) or in other words the generation and amplification of
acoustic waves by shocks, is usually called acoustic-shock waves
interactions.

Based on the linearized theory [6] we will discuss the generation
and amplification of acoustic waves by shocks. For a flow field
containing nonlinear features such as shock waves, the presence of these
waves in the flow, makes it possible for an acoustic wave incident upon a
shock to suddenly change its amplitude. Linearized analysis of the
interaction of small disturbance with shock wave has been made
independently by different investigators such as Powell [7]. Landau and
Lifschitz [8] report that the ratio of transmitted to incident acoustic waves
determined by the linear theory is:

sp,  (M,+1) 2 (1) a2 (2=1)- (o, +1)[(r-1) M 242]
spy WMo+1)  2(y )M} (M7-1)- (0, +1)[(r-1) b 242]

(M

Where M, is the Mach number upstream of the shock (pre-shock
Mach number), M, is the Mach number downstream of the shock (post-

shock Mach number), and y is the ratio of specific heats of the fluid. The
formula (7) predicts amplification of the acoustic wave as it propagates
through the shock wave for all pre-shock Mach numbers. Across the
shock both of the ratio of the perturbation pressure & P, /5 p, and the

ratio of the static pressure p, / p, will increase differently.

3- Initial Solutions

Inappropriate or crude initial conditions used in computational
aeroacoustics can produce large initial transients, where, sharp transients
can generate spurious waves as the acoustic waves propagate to the far
field. Therefore, it is important to use initial conditions that are as close
as possible to the exact solution to avoid or at least minimize the initial
transients. In this problem we will use the mean solution (computed by
integrating the steady-state governing equations analytically [4]) as initial
solution. We can get the mean solution after the following steps:
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First step

We will compute fluid flow variables at the nozzle throat by using
the following equations:

2
A, )
pfﬂ( ]+#i:£ﬂpf‘ (8.2)
A, v+l y-l1
1, -
pt :_10¢ (8‘b)
¥
wo=p T A (8.c)

Where the subscript *is used to denote the fluid flow variables at
the nozzle throat and A, is the cross sectional area of the uniform part of

the nozzle.

Equation (8.a) is a nonlinear equation that can be solved
numerically [9] to compute the density at the throat, therefore, by using
the equation (8.b) and (8.c) we get the other variables at the throat.

Second step

In this step we get the mean flow solution by solving the following
equations:

pul=p.u,A, (9.2)

- N
P (ﬁ] ob)
r. | o

(9.0)
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Substitute from (9.a) into (9.c) we get:

iy 2L P (u*A*)"‘ (@A) =u? b P

r+l p, 7—1p,

(10)

Equation (10) is a nonlinear equation. We can solve this equation
numerically to get the mean velocity when the flow variables at the throat
are known. Once we have solved this equation, equation (9.a) and (9.b)
are used to find the values of mean density and pressure.

The initial flow solutions of the considered nozzle problem in the
two different cases are plotted in the figure (2) and (4). Mach numbers in
these cases are plotted in figure (3) and (5). From the plotted figures, it is
clear that both of pressure and density increase across the shock while the
velocity and Mach number decrease.

4- Spatial Discretization

The optimized 7-point central finite difference DRP scheme presents
a fourth-order spatial derivative approximation. For a function f, the

approximation of the spatial derivative Jf /Jx at the node £ is defined
as follows:

aof R
(Zl ) Ax,;aaj S (b

Whete:

A x is the mesh spacing.
{ is integer.
a; are the coefficients of the scheme.

a,=0 a, =-a_ = 0.770882380518
a,=-a_y=—0.166705904415 (12)
ay=—a_,=+0.0208431427703
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5- Time Marching Scheme

In our computations we use the optimized multi-levels time
advancing scheme of Adams-Bashforth. To explain this method, let us
rewrite the governing equations of the considered problem in the
following compact form

au
~F
= (U) (13)

Where U is the vector of the unknowns and F (U ) represents the
fluxes vector.

By dividing the time axis into uniform grids with a constant time
step At and assuming that U and it’s time derivative are known at

different four time levels n, n—1, n—2 and n—3 we can advance the
solution to the next time level by using the following four-level finite
difference approximation:

3 (”’f)
U(n+] (n +At2b (aUJ (14)
=0

Where values of the coefficients & j are [10]:

b,=2.3025580888 b,=—2.4910075998
b,=1.5743409332 b,=—0.3858914222

6- Artificial Damping Method

The spurious (high-frequency) waves are pollutants of the numerical
solution and have a critical effect on the quality of this solution.
Therefore, to obtain a high quality numerical solution, it should be free
from all the numerical spurious waves. The optimum way to get such
solution is to damp the spurious waves as soon as they are generated.
This can be achieved by using an artificial damping method. In the
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considered problem we will use Tam damping method. In this method we
can add explicit numerical damping terms to the difference equations
where the value of the additional terms can be controlled by a free
parameter. The numerical values of the weight coefficients are:

7-Points Stencil

d ,=0.327698660845 d,=d_=—0.235718815308
d,=d_,=0.086150669577
dy=d_,=—0.014281184692

5-Points Stencil

d,=0.375 d=d_=—0.25
| d,=d_,=0.0625

3-Points Stencil

d,=0.5 dy=d_=-025

7- Solution Procedures

According to the requirements of the time marching scheme, we
consider the following:

% _g . 5(pu)=K2 ond 5(pE)_K3
ot ot ot

Discretizing the governing equations in its conservative form using

the DRP scheme and explicit damping terms with damping coefficient
R, we get the following equations

n 1 3 n 1 ,OM (”) 2 2 "
(Kx )E E“Eﬁﬁ“;‘(ﬂ”)%‘?&(“) ZajAé’ﬂ' —mzdj(p)w- (15.2)
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The four-level time marching scheme for the governing equations
in the conservative form can be written as follows

N (n-1)
P =pM + Ay b (K, S (16.a)
=0
3 N
(o) =(pu)e Ae > b, (K, ) (16.b)
j=0 ,
| 3 |
(PE) ™ =(pE)") + &Y b, (i, Jr) (16.0)
=0

The boundary points have special treatments according to
extrapolation. Based on information in [10] we will write the coefficients
of the DRP scheme for the boundary points as follows:

(I) Left Boundary Points (=0, (=1, (=2
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The point /=0 :
There are no points to left and six points to right. The coefficients are:

ay=—2.192280339
a,= 4748611401
a,=—5.108851915
a,= 4461567104

a,=—2.833498741
as= 1.128328861
ag=—0.203876371

The point /=1 :
There is one point to left and five points to right. The coefficients are:

a_=—0.209337622
a,=—1.084875676
a,=  2.147776050
a,=-1.388928322

a,=0.768949766
a,=-0.281814650
a=0.048230454

The point /=2 :
There are two points to left and four points to right. The coefficients are:

a_,=0.049041958
a_,=—0.468840357
ay=—0.474760914
a, =1273274737

a,=—0.518484526
a,= 0.166138533
a,=-0.026369431

(II) Right Boundary Points (=N, {=N—-1, {=N-2

The right boundary points are the same as the left ones but with negative
sign.
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8- Boundary Conditions Treatment

Proper boundary conditions implementation is important for an
accurate numerical solution. For the nozzle problem under consideration,
the boundary conditions are divided into inflow and outflow boundary
conditions. Inflow boundary conditions must allow the incoming acoustic
waves to propagate into the computational domain. Also, the inflow
boundary conditions must permit the reflected waves to leave the
computational domain. The outflow boundary condition must allow the
outgoing acoustic waves to pass without introducing non-physical
reflections to the computational domain.

8-1 Characteristic Boundary conditions

There are many approaches for boundary conditions treatment [11].
One of these approaches is the Thompson non-reflecting boundary
condition [12,13] based on the theory of characteristic. The main idea of
the Thompson non-reflecting boundary conditions is that, he considers
the amplitude of the incoming waves in the computational domain equal
to zero (no incoming waves) and then computes the outgoing waves
using backward difference from the interior of the computational domain.
Therefore, we can not apply Thompson non-reflecting boundary
conditions as it is, but we must use modified non-reflecting boundary
conditions that allow the incoming acoustic wave to propagate through
the computational domain. To achieve this goal we will consider non-
zero incoming acoustic waves. Now we will discuss in details the
implementation of the non-reflecting boundary conditions on the
considered nozzle problem.

According to the theory of characteristics the compatibility
equations of the original governing equations (5) can be written in the
following form

0 (R1)

. 2
ap Ju (u_c)(é’p Cau}p:c %_4_:
X




P _29P (9P 0P (r2)
ot ot ox Ix
~0’)—104-,00211-1—(14+c) é£+,océ’~u— + PUe ﬁ=0 (R3)
ot ot Ox ox A Ox
According to Thompson notation we write the following
ap ou
H =(u-c)| —=—-pc— 17.a
1 ( C)( A PCO,,XJ (17.a)
H,=u| 2P _29P (17.b)
Ox Ox
op ou |
Hi=(u+c)| ——+pc— I7.c
3 ( )(é’x P é’x} (17.0)

After some algebraic manipulation procedures we can write the
compatibility equations in the following form:

2
i"-=—l[H1+H3]—p”C o4 (18.2)
ot 2 A Ox

@='—1—[H1—H3] (18b)
ot 2pc ;

dp 1| ap

ot cz[é’t 2] (18.0)

Inflow Boundary Conditions

For the considered nozzle problem, the inflow boundary condition
is always subsonic. According to the discussion of Anderson [14] there
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are left-running characteristics, which, represent an outgoing waves and a
right- running characteristics, which, represent an incoming waves. R2
and R3 represent an incoming entropy and acoustic waves, while, Rl
represents an outgoing acoustic wave. The area of inlet of the nozzle has
a constant value, so, the spatial derivative of the area must equal to zero
(0A/6x=0).

In this method, the spatial derivatives along the outgoing
characteristic H, are computed in the interior using the backward

differencing, while, the spatial derivatives along the incoming
characteristic H,are computed from the analytical expressions of the

incoming acoustic wave described by the equations (4). Since there is no
incoming entropy waves we consider H, equal to zero. We write

incoming characteristic H, in the following form

H3=(u+c)(1+pc)M

o cos [a) (—x——tJ:I (19)
+1 M+

As we have discussed before it is better to use the conservative
form of the governing equations, therefore, we will use the conservative
and primitive time derivative relation’s [12]. We turn the boundary
equations into its conservative form as follows,

op _9op (20.2)
ot ot
é’(pu) =u op +p@ (20.b)
ot ot ot
NpE) L ,20p,  du, 1 dp (20.¢)

" —— +pu —
ot 2 ot ot y-1d1
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Outflow Boundary Conditions

The considered nozzle problem has two different cases for the
outflow boundary conditions. The first one, is supersonic outflow
boundary conditions and the other one, is subsonic boundary conditions.

(I) Supersonic outflow boundary conditions:

If the flow at the nozzle exit is supersonic, this means that all of the
waves are forced to move out of the computational domain. Therefore,
the compatibility and the original governing equations are identical. The
spatial derivatives of all the governing equations are discretized with
backward differences.

(II) Subsonic outflow boundary conditions:

When the nozzle exit pressure increases, a shock is formed in the
divergent part of the nozzle. In this case, the outflow at the nozzle exit is
subsonic with the acoustic perturbations. Based on the analysis of the
characteristic theory, there are two outgoing characteristic waves and one
incoming characteristic wave. The outgoing waves are the acoustic wave
with the velocity (u+c) and the entropy wave of the velocity u (the
entropy wave formed inside the nozzle). The incoming wave is the
acoustic wave with the velocity (x—c¢). According to the idea of non-
reflecting boundary conditions of Thomson, we must suppress the
incoming acoustic wave. To do so we consider the compatibility
equations R2 and R3 and instead of the compatibility equations R1 we
use the following equation

é’P_ é’u_

P9 21
a P @h

(8-2) Radiation Boundary Conditions

At the left boundary of the computational domain for the
considered nozzle problem we can apply the radiation boundary condition
of Tam and Webb [15]. Radiation boundary conditions will allow the
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incoming acoustic wave to propagate into the computational domain and
at the same time permit the reflected waves to leave the computational
domain without reflections. As we discussed before, the radiation
boundary conditions are derived from the asymptotic solutions of the
governing equations.

For the current problem, the following equations represent non-
homogeneous radiation boundary conditions that can be applied at the left
boundary. The equations are

M is the Mach number of the incoming acoustic wave.
@ is the angular frequency.

¢ is the amplitude of the incoming acoustic wave.

x represents the position of the left boundary.

9- Results and Discussion

Numerical simulation of acoustic wave incident on steady flows
with or without normal shock inside a quasi-one dimensional convergent-
divergent nozzle shown on figure (1) is performed using the 7-point
central DRP scheme for spatial derivatives and the four-level time
advancing scheme for time derivatives. In the discretization of the
conservative governing equations we use explicit damping terms in order
to suppress the spurious waves generated during the computations.

A steady-state solution is obtained until residuals are driven to
machine zero. After the steady state is achieved we consider the incidence
of the acoustic wave defined by the equation (4) on the inlet of the nozzle
(x=-200). We perform the prcolem with two different cases, the first
one is without shock and the second one is where a normal shock is
formed in the divergent section of the nozzle.

161




In the first case, the inflow boundary conditions are subsonic (Mach
number equal to 0.5). For the boundary condition treatments we consider
the characteristic boundary conditions of ‘Thompson- and the radiation
boundary conditions of Tam. The outflow boundary conditions are
supersonic (Mach number equals 1.55) so, no special treatments are
needed. We used the 7-point of Tam’s damping method for the interior
points and both 5- and 3-points for the other points in the computational
domain. No damping is used for the terminal points ( x = —200 & x = 80 ).
The damping coefficient is a free parameter used to control the damping
terms. The small damping can not suppress the spurious waves and on the
other hand the high damping values has a harmful effect on the acoustic
waves. Therefore, we can say that, the damping coefficient plays the key
role in the syccess.of the computation. In our computation we use the
value 0.9 for the damping coefficient. Figure (6) shows three snapshots of
the spatial distribution of pressure perturbations.

In the second case, normal shock is formed in the nozzle by
increasing the exit pressure with respect to the total inlet pressure. The
inflow boundary conditions are subsonic (Mach number equals 0.5). As
in the first case, we consider the characteristics boundary conditions of
Thompson and the radiation boundary conditions of Tam for the boundary
condition treatments. The outflow boundary conditions are subsonic (Mach
number equals to 0.6). We use the characteristic boundary conditions of
Thompson. Unlike the first case, the constant damping coefficient can not
be a good selection. In this case we use a pressure sensor to locate where
the greatest pressure gradient is and then choose the value of the damping
coefficient consequently. We use the 3-point of Tam’s damping method for
all points of the computational domain where no damping is used for the
terminal points (x =200 & x =80 ). In the computation of this case we

use the value 0.65 for the damping coefficient and increase it to 4.5 around
the greatest pressure gradient. Figure (7) shows two snapshots of the spatial
distribution of pressure perturbations in presence of the normal shock.
From figure (8) we see very good agreement between the exact mean
pressure (represents by line) and the numerical one (represents by bold
black circles). '

From the previous discussion we conclude that the DRP scheme
with a careful selection of the damping terms perform the problem very
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well. According to the little dissipation of this scheme the convergence to
the steady state is a slow convergence where the computation requires
approximately 40000 times the time increment Afin the case without

shock and more than double of this number for the computation in the
case of shock. For more discussion and numerical solutions of a similar
problem containing an acoustic wave interact with a shock in a nozzle we
refer to the references [16,17].
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