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On the Scattering Data of Sturm-Liouville Problem
with a Spectral Parameter in the Boundary Condition

Khanlar R. MAMEDOV and Hamza MENKEN

Abstract

In this paper, it is given the definition of the scattering data
and the many properties of scattering data are investigated for
the differential equation

~y" +q(z)y = Ny
on half line containing a gpectral parameter in the boundary con-
dition
¥/ (0) + (ap + e A 4 Ay (0) = 0.

Key Words: Sturm-Liouville operator, inverse problem of scat-
tering theory, scattering function, scattering data.

1. INTRODUCTION

On the semiaxis 0 < z < o0, we consider the boundary-value problem
generated by the differential expression
—y" +q()y = Ny 1)
and the boundary condition
¥ (0) + (ao + icn A + apA®)y(0) = 0 (2)

where A is a spectral parameter and the coefficient ¢(z) is real-valued function
satisfying the condition

| a0l < oo 3)
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here the numbers cp, ajand ¢y are non-negative real numbers.

On the semiaxis, the inverse problem of scattering theory (IPST) of the
equation (1) with boundary condition y(0) = 0 was solved in [1] and [2]. On
the semiaxis, the same problem with boundary condition

y'(0) = hy(0)

was investigated in [3]. In that, h was any real number and the function g(z)
was real-valued function satisfying the condition (3).

The boundary problems with spectral parameter dependent boundary
condition for the equations (1) are interesting with their physical applications
[10]. Many problems in wave theory of mathematical physics, geophysics and
seismology can be reducible to such this problems [4]. The inverse problems
of spectral analysis for such that boundary problems with different cases were
investigated in [5] and [6]. The inverse problem with respect to the spectral
function on semiaxis was solved in [7].

It is well known (see [2]) that the boundary value problem of (1), (2)
has bounded solutions u(},z) for —o0 < A < 00 and A = i)\, (k = T,n),
MOreover, as & — 0o ‘

u(\, ) = e — S(N)e™ + 0(1), (—o0 < A < 00)

and
u(ihg, ) = mee” (1 + o(1)), (k= T1,n),

where the numbers Az, my and the function S(A) will be defined later. From
the formulas above it follows that the behavior of radial wave functions
u(\, z) at infinity is determined by the collection

{S(A) (—oo < A< oo); Ay my (k=T,n) }.

The collection
{S(A) (o0 < XA < o0); Ay my (k=T,n) }

is called the scattering data of the boundary problem (1), (2). The inverse
problem of scattering theory for the boundary problem (1), (2) is uniquely
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construction the boundary problem (1), (2) with respect to the scattering
data, and the theorem of uniqueness was shown in [8]. The continuity of
the scattering function on the real axis and Levinson’s type formula were
obtained in [9].

In this paper it is investigated the properties of scattering data. Put
oo

o(z) = /woo lg(t)| dt, o1(z) = /,3 o(t)dt.

It can be easily shown( see [2]) that, for all A from the closed upper half-plane
the equation (1) has the solution e(), z) that can be expressed as

e(\,z) = e +/ K(z,t)edt. (4)
x

Moreover, the kernel function K'(x,t) satisfies the relations

1 z+t T+t
(K (2,0)] < 5o(——=)expyoi(z) —or(——) ¢, (5)

2 2 2
1 [e0]
K(w,a) = / o(t)dt, (6)
T

and K (z,t) has partial derivatives with respect to both of variables satisfying
the inequality
()B(vl,xQ) 1 (1U1+(132)
6'(1?]' 4 7 2

< % (x )O‘(ml ;$2)exp {01(1‘1) — Ul(xl ;mg)} .
(7)

In particular, the function e(), ) is an analytic function of A on the upper
half-plane and is continuous on the real axis. In the upper half-plane Im \ >
0, it is satisfied the following inequality

le(\, z)| < exp{—Im Az + o ()}, (8)
le(h2) — ¢ < {olm ~ae+ g fert-e o), O
le'(\, ) — ixé’| < o(z) exp {— ImAz + o1 (2)} . (10)

The functions e(/\,:c) and e(—M\,z) are form a fundamental system of
solutions of equation (1) for any real A # 0, and their Wronskian equals to
23\

Wie(A z),e(=\2)} = € (N 2)e(=X z) — e\, 2)e'(—=A,z) = 20\, (11)
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2. MAIN RESULTS

By w()\, z) we denote the solution of the equation (1) satisfying the initial
data
w(0,2) =1, wh(),0) = —(ag + i + azA?).

Theorem 1 For all real numbers of A # 0, the following identity is valid:

2idw(A, ) ———
=e(\ z) - S(\)e(\ z), 12
SO0 T (T e + anBe0n0) )~ SNeh ) (12)
where - —
e'(\, 0) + (ag + i A + apA?)e(), 0)
S(A) = . 5 ,
e'(\,0) + (ag + toa A + a2 X*)e(A, 0)
with

SN = S(=A).

Proof. Since two function e(—\, z) and e(), z) form a fundamental sys-
tem of solutions to equation (1) for all A # 0, we can write

w(A, z) =c1(Ne(A z) + e2(Ve(A, z)

where

V0 + (a0 -+ dan) + s 20 0)
c1(>\)=e( ) + (20 Fj;“;/\ 2 X)e(A,0)

and ' .
(), 0) + (a0 i) + apdPe(), 0)

2iA '

ca(A)
Then

&'\, 0) + (0 + i A + aaXPe(), 0)
20\

" 0 ) 2 —_—
L& (A, 0) + (ao + ;31/1\)\ + azX”)e(), 0) e(\, z). (13)

w(,\) CL) = Fl()\, IE) “+




Let B(X,0) = €'(A,0) + (g + iy A + 03A?)e(), 0). Since g(z) is real, it
follows that e(—\,0) = e(}, 0), and hence that E(X,0) # 0 for all real A # 0.
To prove this we assume that there is a non-zero Ay € (—00, 00) such that

E(Xo,0) = €'(Xo,0) + (ap + i1 Ao + cgAd)e(Xo, 0) = 0

or
6/()\0, 0) == -'(Cl.’o + ial)\o + Ckz/\g)e(AQ, 0)

From the formula (10) we get
e’( o, 0)e(Xo, 0) — (Ao, 0)e’(No, 0) = 2iXg
or
—2ia A |e(Xo, 0))* = 21

Since o > 0 we have a contradiction, hence we obtain that E(A,0) # 0 for
all real A 5 0.
According to the formula (13) we obtain

2Aw(A, )
e'(X,0) + (cp + sy h + agA?)e(\, 0)

=e(\ ) — S(\e(\, «)

where

SO\ = e'(X, 0) + (g + G ) + apAbe(), 0)
e’()\., 0) -+ (Olo +ton A + CYz)\z)e()\, O)

and
E()\0) = ¢'(=X,0) + (ag — o A + cpAPe(=A, 0) = E(~A, 0),
S(N) =S(=N.
This proves the theorem. ®m
The function S(A) is called the scattering function of the boundary prob-

lem (1), (2).

Theorem 2 The function E(\,0) may have only a finite number of zeros
on the half plane Im A > 0, they are all simple and lie on the imaginary azis.
The function A [E(X,0)]™" is bounded in any neighborhood of the point A = 0.
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Proof. The proof of the first part of the theorem was proven in (8],
Now, we shall prove that the function A[E(),0)]™" is bounded in D, =
{\] M € p,Im A > 0} for sufficiently small numbers p. If E(0,0) = €'(0,0) +
ape(0,0) # 0, it is clearly that this function is bounded in Dp.

We assume that F(0,0) = €'(0,0) + ape(0,0) = 0. We let § denote
the infimum of the distance between two neighboring zeros of the func-
tion E(A,0), and show next that § > 0. Otherwise, we could exhibit a se-

quence of zeros, {zxk} and {¢\} of the zeros the function E(),0), such that
Al—l—fgo (Xk — M) =0, X > A > 0, and m}gxﬁ)\uk < M. Then it follows from the
estimate (9) that, for A large enough, the inequality e(i\, z) > 1e=*® holds
uniformly with respect to & € [A,c0) and X € [0, 00) , whence
~24M
8M

e(izg, z)e(irg, z)dz > (14)

>\8

On the other hand, according to the formula (11) in [8] we have
0 = (>\k - X}c) /e(ixk, a;)e(i)\k,a:)d:c + 042((>\Ic ~ X}c) .
‘0

e(ihg, 0)e(iAg, 0) + aze(irg, 0)e(irg, 0). (15)
Letting & — o0, we get
oy le(ihg, 0)|* = 0.
This relation gives a contradiction if ay > 0. It oy = 0, from the formula (15)
we write

(e ¢]

0 = /e(ixk,x)e(i)\;;})dm+e(ixk,0)e(i)\k,0)=

A
e(z’i,c,:c) [e(z’)\k,:z:) - e(ixk,z)J dz + /e(ixk,x)e(ixk,m)d:ﬁ +
0

Il
o\::. o

y o

+ / (i3, 2) e ) dz + (i 0)e(ire, 0).
A




Taking limit as & — oo, we get

0> l@/e(ixk,w)ai/\k,w)dm.
k—o0
A

But this contradict with the inequality (14). Thus, the assumption is not
true, so that 6 > 0.

If p < 16, the function E(X,0) has not other zeros in the half-disc D,.
So, the function

is regular in the interior of the half-disc D, and is bounded in the half-circle
{AM A = p,Im A > 0}. According to the properties of the function ¢(A, z)
and formula (12), we have the function ¢(A,z) is uniformly bounded for
—p < A < p. However, since it is not shown that the function ¢(M, ) is
continuious as A -— oo, we can’t use the maximum principle to prove this
function is bounded in D,. For this we consider the equations family

—y" + qp(z)y = Ny

where @ it ;
_Joglz) itz </
q"(x)“{ 0 ifz>p"

and the functions eg(z,z), wg(z) are corresponding solutions to e(, z), and
w(A, @), respectively, and Eg(A,0) is corresponding quantity of them.
If ¢ < 3, it follows that

wa(A,2) = w(N, ),

bs(\ 7) = Mwp(A ) Mw(A, @)
A Eg(A0)  €a(N,0) + (ap + doa X + ca)?)eg(), 0)

where -,
ep(\ 2) = +/ Kp(z, t)e™dt,
T

) ; ® 0K p(z,t)
€g(, ) = AN — Kg(z, e + / i%%)em it
T




In particular we get Kp(z,t) =0 for z 4+t > 20 and

ﬂlim Kp(z,t) = K(z,t),

lim 6.[([3(33‘ t) - 8K(£L‘,t)
Booo Or Oz

bl

and from (5), (7), we prove that as uniformly for 8

oo % oy e {oute) ~n (P
OKp(z,t) n lqﬂ(w -2# t)

ol) 4 2 < écr(a:)a(“’;‘t)exp{al(m) —m(””;‘t)}.

Hence, the function eg(A, ) is an exact function of X\ and is uniformly
ﬁlim eg(A, t) = e(A, ) in the upper half-plane Im A > 0.

Let 63 be the infimum distance of two neighboring zeros of the function
Ej(),0). It can be seen that infdg = do > 0. The function Eg(X,0) has at
most one root for any number 8 in the half-disc D, ( py = 0,58y). We denote
this root by Mg, if it hasn’t any root we assume that Ag = 0.

Now we construct the function ¢4(A, z) /\;:;\\a This function is meromor-
phic in the whole plane and is regular in the interior of the half-disc D, . In

the upper closed half-plane we get

)‘___EE <1
)\'}"L')\,g -

and the function Eg(), 0) does not vanish on the curve { | |A| = pg, Im A > 0} ,but
it is uniformly bounded on this curve for any 8. By the formula (8) these
functions are uniformly bounded on the interval —p, < A < p,. Hence, these
functions which is beginning with a number 8 are regular on D, and 0D, ,

and it holds
z/\/j

A+ iAg

So, according the Maximum Theorem on the modulo of regular functions we
have

sup = ¢(x) < 0.

A€8Dy,

Dp(A, m)

A —idg
A+ idg

sup ‘ = ¢(z) < 00.

A€Dgg

¢’ﬁ(/\ T)+




Since lim Mg = 0 and ﬂlim dg(\, ) = ¢(A, ), taking limit in the last
— OG0 !

B—ro0
inequality we obtain

sup |¢(A, )] < (@),

AEDp,

But, for sufficiently small z = x4 we have

. 1
)l > 5

50
and so,
2
sup !/\ (A, 0)) 1] < - c(:vo)
A€D,, Zo

The theorem is proved. ®

Theorem 3 The function 1 — S(X) is the Fourier transform of a function
Fs(x)

1 - S0 = / Fo(t)edt
and Fs(z) of the form
Fs(z) = FO(z) + F(x),

where F{M(z) € Ly(~00,00), whereas F& (z) € Ly(—o0,00) and F@(z) 4s
bounded in whole azis.

Proof. From the formula (4) it follows that

e(),0) =1+ / K(0,t)eMdt,

e'(\,0) =i\ —- K(0,0) + / K,(0,t)edt.

We shall use the following notations for shortly:

do — K(O, O), QDO(A) = Qi + ’I:CM]_A -+ &2)\2 — qo;
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Ki(t) = K;(0,t) + 2K (0,8); Ka(t) = an K(0,t) + o K4 (0, 2);
](3('1;) = alK(O,t) - azf(t(O, t)

and -
Bi(=)) = / Kj(f)eMdt, j=1,2,3.
0

Then, we have
21+ aage) + Ki(=A) + MK (= ) — K1) — iAK5())
@o(A) + AL+ aago) + K1(=\) + A Ka(—N)

Every one of the functions

1 8(\)

. (16)

L oy =5 @t(§§1(2<‘A>,

ML+ 220)
Po(A)
R0 = K1(>\)90‘:(’i>\/\)f’(3(>\)

is the Fourier transformation of a summable function. By the simple trans-
formations, it follows that the right side of the inequality (16) equals to the

assertion -~ ~ ~
2H() + £O) = fs(\)
14 fi(A) + f2(N)

A =

Hence we have

Lo sy = —JA)
1+ K(-))

where the functions
FO) = 2R + BV = ),
K(=X) = A0 + ()

are the Fourier transformation of the summable functions.
We can rewrite the formula (16) as form

—~

1-5() = f( [{1+ (1-%(,\N—1))if(—-x)}“l—1]++f(x)w

~ 1 1
—F(\ - =
I ){1-!- {1—E(>\N—1)}i?(~>\) 1+K(—A)} 1

10




where
» 1, if [N <1
h(A) =< 2=\, if 1<AL2
0, if A >2

is the Fourier transform of the function h(z) € L;(—00,00). Also, A(AN 1)
is the Fourier transform of the function Ay(z) = NA{zN), and for all f (z) €
Ly(—c0, 00) it holds

Jim [£(2) = by« f@)]l, =0 (18)

where hy* f(z) is the convolution of functions Ay (z) and f(z) from L;(—o0, 00).
Note that the convolution Ay * f(z) of functions hy(z) and f(z) from
Li(—00, 00) is defined as

oo _
b (@) = [ bl = DO
—00
In general, recall that the Fourier transform of the convolution

Fro@= [ 1o gty

of two functions from Ly (—o00, 00) equals the product f(A)G(A) of their Fourier
transforms, and the norm of the convolution does not exceed the product of
Norms;

1 *gllz, < IFlz, gl -
Consequently, if || f||;, < 1, then the series

converges in the metric of Ly(—co,00), its sum belongs to this space and its
Fourier transform is equal to

“Foy+{Fo} o + = {170} -

We conclude, from (18) and the previous argument that for NV large enough,
the function

[1 + {1 - ’E(AN*)} f?(—x)] T
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is the Fourier transform of function from L;(—00,00). It follows that the
sum of the first two terms in the right-hand side of (17) is also the Fourier
transform of a summable function F$)(z) € Li(—o0,00). Finally, since
R(AN1) = 0 for |A\| > 2N, the third term in the same formula vanishes
for || > 2N and is bounded. So, it is the Fourier transform of a bounded
function Fg)(m) € Ly(—00,00), and the theorem is proved. =

Next using the identity (12), Theorem2 and Theorem3, we obtain (see
[8]) Gelfand-Levitan-Marcenko’s basic equation which has important role in
the solution of IPST

where "
Z mie M 4 —L/ (1 - S(\)e*d (20)
k=1 -0
and Do
m? = / oz, i) [P da + 2292 00 i)
0 2M

The numbers my, (k = T, n) are called the norming constants of the boundary
problem (1), (2). The collection {S(X) (=00 < A < 00); Aes my (k=Tn) }
which is defined above is called the scattering data of the boundary problem
(1), (2). From the formula (20) we can determine the function F(z) with
respect to the scattering data {S()) (=00 < X < 00); Ax; me (k= 1, 1,n) },
and we obtain the basic equation (19). As it was shown in [8], the basic
equation (19) has uniquely solution for every & > 0. Solving this equation we
can find the kernel function K (z,y) of the solution (4) and by formula (6)
we can construct the potential g(z).

Using the basic formula (19) we can get the some properties of the func-
tion F(x). According to continuity of the kernel function K(z,y), the function
F(z) is continuous for every z € [0,00), and hence the basic equation(19)
holds for y = z, too. As in [2], it can be shown that, for all z > 0, the
function F(x) is a derivative function and holds the inequalities

|F(2z)] < %O'(x)chal(w)em(:u)’
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2

oQ

F'(2z) — %q(:c) + % t/q(:c)dt < 0?(z)e” @ shoy (). (21)

T

Since the functions (142) [g(z)| and o(z) are summable on [0, 00), sup(1+
z)o(x) < oo, and from the inequality (21) we have (1-+z) [F'(z)] € L1 [0, 00).
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