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ABSTRACT

The theory of isotropic areal space of submetric class was studied by
Kawaguchi and Tandai (1952) , Kikuchi (1968) and others . A symmetric
curvature tensor field was defined and studied by the present author (1993)
in generalized Finsler space. S.M.Uppal and the author (1996) have
obtained Veblen identities in special Kawaguchi space . The purpose of the
present paper is to define a symmetric tensor field and obtain its Bianchi
and Veblen identities . The recurrence property of this tensor is dealt with in
the last section of this paper .

1.INTRODUCTION

Let A" be an areal space of the submetric class whose normalized
metric tensor g, satisfies the relations :

(1.1) | 8iPAP) =8up » |8u|=F
(12) g7Pi=0, 7,=8,-B, , B, =p.pi
and

(L3) g5k 1ipa =0,

where the Latin indices run from 1 to n and the Greek indices from 1 tom,
and ;%denotes d/dp’ .

The covariant derivative of X', with the symmetric connection parameters
I}, is defined as




(1.4) Xy =X - X' T+ X7
where Iy =T pl and ,; denotes 8/ox’ .

The corresponding curvature tensor field is defined by

(1.5)

i _ 1 T * o Tvem *,a T *m opkm X Em
Kjk/l - ij,h —1 ik ij sm Falr + th om Fak + thrjk Flrzkrjlr 3

which satisfies the identities

(1'6) K j‘kh =-K ;‘hk
and
(1.7) Kiw+Kp + Ky =0

The commutation formulae satisfied by the curvature tensor field are
{
(1-8) Xi]klh _Xilhlk ==Ky X,

and

(1.9)

T . =—K!
Tklhlr Skl T K

i in T = KTy = T Ko P

where X, (x) and T, (x, p) are arbitrary vector and tensor fields respectively
if we substitute 7; = g, in (1.9), we have

(1'10) : Kijkh +Kjikh :_g,-ﬁ:zn K

akh

_ ) m m . j
where Ky =8yKand Ky, =K3,po .
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F.5

The covariant differentiation of (1 .8) with respect to x” gives

I
(1.11) Xt = Xiitr = ~Kiugp X1 = Kia X, -
Weput T, =X, in (1.9), to get

a Km

ihr Sm ahr *

(112) Xi|k|h|r - Xi|k|r|h = _Kl Xl|k _K/ithiU - (Xllk)

The cyclic permutation of indices k ,h, r in (1 A 1) yields Bianchi identities

(1.13)

+K:

i
jkhl h jhl‘l k

i * * a 1 ¥, a m
+ K+ e Ko +Te Ko + T K =0

k| Jkom > ahr jhom Jrom
The Veblen identities satisfied by the curvature tensor K, are

i i i *  a m
K e T Koy + Ky + Tiiom K

i
jkh‘ r

krj\h Jkom ahr
(1.14) ! *. "
i, m i, a n i.a mo__
+ Frh S Kakj + th Sm Kark + Fkr Sm Kajh - 0

2. SYMMETRIC CURVATURE TENSOR FIELD J!

Jkh

In an areal space of submetric class A,S”’) we notice that the curvature
tensor K, is skew-symmetric in the last pairs of covariant indices .

Following the method of Gh. Vranceanu (1957) , we define symmetric
curvature tensor Jj,, in A,(,’”) as under :

(2.1) =K

i
Jkh + K kih ’

where Kj.k,, are the components of the skew-symmetric tensor . From
(2.1), it is obvious that

(2 2) J;’kh = Jli

ih
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which shows that J ;k,, is symmetric in the first pair of covariant indices
since K’y + Ky, =Ky + Ky, -

The cyclic permutation of indices j, k ,h in (2.1) yields the identity

(2 3) '];kh + Jllfh + JI

hi

. =0
in view of (1.7) .

Theorem 2.1 In an areal space of submetric class A,(,”’) , the symmetric
curvature tensor J’ s satisfies the Bianchi identities

(24) jk’lll + JI

Jhrlk

+J =0,

Jrk|h

Proof . Using definition (2.1) in the equation (2.4) , it becomes
(25) ( ;kh +Klijh)|v ( ;h: +K;_;: )l +( ;tk +K}’jk )'1 0 .

In equation (2.5) , if we develop the calculus by considering the properties
(1.6) and (1.7), this relation is identically verified .

Theorem 2.2 In an areal space of submetric class A,(,’") the symmetric

curvature tensor J ;k,, satisfies the Veblen identities

(26) ']ji'khlp +Jj’k/l|) ']ll"ltk[j +']/qu/1 = 0 '

Proof .  Onaccount of (2.1), the equation (2.6) assumes the form
(2.7)

K}kh,r + K/g/h,l + Klyl,k + Kjln,k + K?/I/(,j + Kh/k,j + Kll/,h + Kr/g/,h 0.
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We observe that the relation (2.7) is an identity in view of the properties
(1.6), (1.7) and (1.13) of the curvature tensor K;k,, .

Theorem 2.3 In an areal space of submetric class A,(,"') , if we denote

(2.8) Bl =g+ i + i
and

(2.9) Vi =iy + J,'y,,k + Tty i
then the following relations

(2.10) Vig = Bl + Bhy

and

(2.11) 2B = Vi + Vi +V

hold good ,which show the equivalence of Bianchi and Veblen identities .

Proof . Applying (2.8) and (2.9) in the equations (2.10) and(2.11), we
get

(2 12) jk/l[ll + le;|lk + J:'Itklj + Jl’n'jlh Jj,kh]r
+J Jrklh + leu|k + lej[lc + Jhla]j + Jh/k[;
and
(2.13)
2( ;‘kh]; + Jﬂk[lz + len]k) }kh]; + J}y;[lc + J;Izk[} + JI:t/[h

+ Jl)lc]lz + chjh]; + Jlla | + J;hj]k + ‘]

Jhrlk + Jyk[h + Jkl‘ll!_/ + J

hkj[;
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respectively .
The relations (2.12) and (2.13) are identically verified by applying

(1.6),(1.7),(1.13) ,

(1.14) and (2.1) .
3. RECURRENT SYMMETRIC CURVATURE TENSOR FIELD

A recurrent and symmetrically recurrent areal spaces of submetric
class are characterized by

(31) K;‘kh|m = I/m‘l<j'kh s K;‘kh # 0
and
(3'2) ji'khlm =Vom ;‘kh s J_j'kh #* 0

respectively . The non-zero vector field ¥, is called recurrence vector field

m

LEMMA 3.1 The necessary and sufficient condition for an areal space of
submetric class to be symmetrically recurrent is that it is a recurrent areal
space of submetric class.

Proof . Letus assume that the condition(3.1) is true . In view of (2.1) ,

we have
(33) ;khlm = (Kjkll + K;;ﬂ’ )m

which yields (3.2) , that is, J i is recurrent and the space is a symmetric

recurrent space.
Conversely , if (3.2) is true , we find

(3.4) (Kiy+KL, )I =v, (K., +K.,)

m

or equivalently
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(35) (K;'khlm - vaKji'kh )+ (Klijldm - VmKlijh ): O H
which implies (3.1).

COROLLARY 3.1 Insymmetrically recurrent areal space of submetric
class , the Bianchi and Veblen identities assume the forms

(3'6) Vr'] ;kh + VkJ ;’hr + Vh J ;r'k =0
and
(3-7) Vr‘]ji’kh +Vk‘]Ii1jr +VjJ;hk +Vh']lirj =0

respectively . .
Proof . Itis evident from (2.4),(2.6) and (3.2) .

Now we shall prove certain theorems on the recurrence vector field
V. in the symmetrically recurrent areal space of submetric class . We shall

m

denote hereafter by (J ) the property : the value of the symmetric tensor

field J ;.k,, is not the zero tensor at each element (x, p) of the space .

Theorem 3.1 In a symmetrically recurrent areal space of submetric class
having the property (J) , if J i 1s independent of p;, , the relation

(38) Vo =V}, = VW =V,
holds good .

Proof .  Differentiating (3.2) covariantly with respect to x" , we get

(3.9) J!

Jkh [ m[ n

_ i i
- m[n']jkh + I/ml/anjkh

which yields
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(3 10) (in‘kh[m[n - ‘]ji‘kh[n[m ) = (Vm|n - Vn|m )] .;'kh .

Using the commutation formula (1.9) in the equation (3. 10) , it gives

(3.11)

1%

m[n - ¥

i __pp i P i _pp i i P
Vr[m p Jkh T K Jmn kah K knn ‘] Jjph K hmn J Jkp +K pnm J Jkh

by considering the fact that J J".k,, is independent of p| .
Now differentiating (3. 1 1) covariantly with respect tox’ and applying (3. 1)

and (3.2), we obtain

(3' 12) (I/m|n - Vn[m )I ,J j‘kh = (I/m|n -V )V/J ;'kh :

alm

In view of the property (J ) , it immediately yields (3.8) .

COROLLARY 3.2 In asymmetrically recurrent areal space of submetric
class having the property (J) , if J ' is independent of p, , the recurrence

vector field V, satisfied the identity

(3.13) Voo =V Wi 0 =7, 0, + 0, -V, 7, =0

Proof . Adding the expressions obtained by a cyclic change in the indices
I,m and n in (3.8) , we have

(3.14)
) (len - I/'nlm )Il + (Vn]l - I/I|n )m + (I/I!m - Vm|l)
= I(I/m|n -V,

nm

n

)+ VWt =V 5V = Vm|n)

m !

On account of (1.7) and (1.8) , the above equation yields (3.13) .
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Theorem 3.2 In a symmetrically recurrent areal space of submetric class
having the property (J ) ,if J j.,(,, is independent of p! , the recurrence

vector field V, satisfies the relation

(315) ‘ I/[Ilmlnllr = I/[n|m|1][r >

where the symbol [lmn] represents skew-symmetric part with respect to the
indices /,m,n .

Proof . Taking covariant differentiation of (3.8) with respect to x” , we
get

(3 1 6) Vm]nlllr - Vn|m|l]r = Vllr (len - Vn!m )+ Vl (VmIn[r - Vn|m[7')

which yields

(3.17)

(I/mlnlllr - I/mIISZ' )+ (I/llmlnlr - I/nlmlllr ): (I/mln - I/nlm )VISV
n

- V;n|1 - I/I[m n|r _(I/m|n|r —I/nlmlr)V/ - lymlllr _V}ll)i‘l‘

In view of (1.1 1) , it assumes the form

(3.18) =Ko =KV + Vigge =)= Vo —V'IS")VA"

- (I/m[l Vi )Vn|r + (V Vulr P - Vattr = Vgl ¥

I)IIHII' - NIINII‘

Taking cyclic permutation of the indices /,m,n in (3.18) and using
(1.7),(3.1) and (3.13) in the obtained result ,it reduces to (3.15) .
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