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Abstract 

Necessary and sufficient conditions of optimality for convex case are deduced 
for the considered optimization problem (PM) with discrete inclusions on the ba­
sis of the apparatus of locally conjugate mappings for convex compositions and 
the cones of tangent directions. Then duality problem ( P D ) is formulated for the 
considered problem (PM) a n d duality theorem is proved. 
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1 . Introduction 

I t is known that optimization problems wi th discrete i = 0 , l , . . . , T — 1 time 
in euclidean n-dimensional spaces can be turn to the minimization problem 
of a function in nT-dimension spaces on an intersection of finitely number 
sets and one of the theorems of mathematics programming is used. Note 
that the locally adjoint mappings for convex compositions is given by B.N. 
Pshenichnyi [1], The same results for superlinear mappings are obtained by 
A.M.Rubinov [2]. Different optimization problems and duality for discrete 
and differential inclusions are derived by E.N. Mahmudov (see [3]-[6]). I n the 
presented work, optimality conditions for a multivalued mapping constraint 
problem, which is equivalent to the problem with discrete inclusions, have 
been obtained. 



2. Necessary information and problem statement 
Lets consider the following convex discrete time problem: 

minimize g{xr) 
(PM) subject to Xt+i G at(xt), t — 0 ,1 , . . . ,T — 1 

x0 G N, xT G M 

(1) 
(2) 
(3) 

where at is a convex multivalued mapping for each t = 0 ,1 , . . . ,T — 1 such 
that at : Xt —> all X* are an euclidean n-dimensional space, g is a 
convex function, N C X° and M Ç XT are convex sets. 

The set of vectors xo, x \ , X T which hold ( l ) - (3) is called optimal tra­
jectory and denoted by { x t } J = Q . Let us show the composition of mappings 
ao, a i , C L T - I by aT, i.e. aT = ar-i ° a r - 2 ° ••• ° ao- I t is obvious that 
aT : Ji° —> X T . On the other hand, the'composition for multivalued map­
pings is given by 

(at oat^1)(xt^i) = {xt+i : xt+i G a t (œ t ) , xt G a i - i i ^ i ) } 

The graph (gp/i) of composition of multivalued mappings can be defined by 
using the definition of graph of the multivalued mappings like below: 

gph(atoat-i) = {(xt-i, xt+i) : (xt-i,xt) G gphat--i_, (xt,xt+i) G gphat} 

Now let us give some necessary definitions. 

Definition 1 . Ka(x,y) = {(x,y) : (x0,yo) + A(z,f/) G gph a, X > 0} . 

Definition 2. Subdifferential of the function g(xx) at a point XT is given 
by the formula 

After all these, the problem (l)- (3) is equal to problem below 

minimize g(xr) 
(Pv) subject to XT G aT(xo), 

x0 G N, xT G M 

(4) 
(5) 
(6) 

dg(xT) = {xT : g(xT) - g(xT) >< xT, x T - x T > , Va;T G XT}. 
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Definition 3. (aT)*(xT,(x0,xT)) = {XQ : (-x*0,xT) £ K*T(x0,xT)} 

Theorem 1 . Let the function g(xx) has the minimum value at the point XT-
Furthermore, let KAT(x0, XT), KN(XQ), KM(XT) be cones of tangent directions 
for the sets gph aT, N, M, respectively, where XQ £ dom aT. Then there exist 
a number A > 0 and vectors xT £ dg(xr), XQ £ K*n(XQ), x*e £ KM(xT) which 
are not equal simultaneously to zero such that 

x*0 £ (aT)*(xT; (x0,xT)), x*T + x*e£ Xdg(xT), x*e £ K*M(xT). 

I n addition, i f A = 1 then these conditions are also sufficient for optimality. 

Proof. I t can be see easily that the solution of the problem (4)-(6) is 
equivalent to the minimization problem of the function f(z) = g(xr), z = 
(x0>xT) on the intersection set gph aT f l iV x XT f l X° x M C Z = X° x X T . 
Furthermore sub differential of f(z) at point z = (XO,XT) has the form 

df(z) = {0} x dg(xT) . (7) 

Then, 
df(z) = iz* = ( £ o > 5 r ) -XQ = 0, xT£ dg(xT)} 

According to conditions in theorem Kar(z)) KN(XO) X XT, X° X KM(XT) are 
cones of tangent directions for the sets gph aT,N x X T , X° x M at the point 
z, respectively. I f we calculate their dual cones we find 

(KN(x0) x X T ) * = K*N(x0) x {0 } , (8) 

(X° x KM{xT)Y = {0 } x K*M(xT) . (9) 

Now, using Theorem IV.2.4 in [1] and the formulas (7)-(9) there exist a 
number A > 0 and vectors x^, x*e, ( X Q * , ^ * ) not equal simultaneously to zero 
such that 

A(0, x*T) = (xl*, 4*) + (x*0,0) + (0, xt), (10) 

x*T £ dg(xT), (xl*, 4*) £ K*T(z), (11) 
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x*0 e K*N(x0), x*e e K*M(xT) . (12) 

We have from (10) that XxT = x^ + x*e, x\* + XQ = 0 or xl* = - X Q , X ? 
= XxT — x*e. Consequently 

(-x*0, Xx*T - x*e) eK*T(z) 

Then, using the Definition 3 of the locally conjugate mapping we have 

x*0 e (aT)*(XxT-x*e,z) 

where the vectors A, XQ, x*e are not equal simultaneously to zero. Let xT = 
Xx*T - x*e, x*e e K*M(xT). I t follows from [l.Theorem IV.2.4 ] that 

x*T + x*e = XxT , x*e e K * m ( X T ) 

and so finally 

x*T + x*e e Xdg{xT) , x*e e K*M(xT) 

where the vectors A, XQ, X* are not equal simultaneously to zero. 

The relationship between (aT)* with a*, t = 0 ,1 , 2 , T — 1, are given in the 
following Theorem 2. 

T h e o r e m 2. Let Kat(xt,Xt+i) be cones of tangent directions for the multi­
valued mappings at, t = 0 ,1 , . . . ,T — 1, at the point ( i t , i i + i ) £ gph at. In 
addition, we suppose that there exist the points X® G X* for which hold one 
of the conditions below 

(a) (x0
t,x0

t+1)erigphat, t = 0,1, 2, . . . ,T - 1 

(b) (x°t, x°t+1) e int gph at , t = 0 ,1 , 2 , T - 2 

( X T ^ , ^ ) e gph aT_i . 

Then the following equality is verified 

( a T _ i o a T _ 2 o • • • o a0)*(xT; (x0, xT)) 
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= {XQ : x% € a,o(xl, (x0, x^), •••, x*T_x G e ^ - i f e (xT-i,xT))} (13) 

or shortly 

(aT)*(-, (5 0 , XT)) = a*0(-, ( x 0 , o • • • o a ^ ^ - , {xT_uxT)) . 

Proof. Let us prove the theorem for the composition atoat-\. The following 
statements are equivalent to each other by the definition of locally conjugate 
mapping: 

x*t_x G (a* o at-i )*(a i + 1 , ( £ t _ i , £ t+ i ) ) 

and 
- < xt-uXt-i > + < »t+i,a£u > > 0 

( 5 t _ l , 5 t+ l ) G i ^ o t o a t _ i ( K t - l , ) (14) 

where Ka^^ (xt-i, Xt+i) are cones of tangent directions at point (xt-i,Xt+i) G 
gph(at o dt-i). On other hand ( x t _ i , x t + i ) G gph(at o a t _ i ) implies that for 
some i t G X* (a; t _i,5t) G a t - i , (xt,xt+i) G sp/i at. 

Now let us consider the following two cones at point (xt-i,xt, Xt+i) i n space 
X*-1 x XT x X t + 1 : 

i f t - i i x t - i . x t . x t + i ) = {(xt-i,xt}xt+i) : (£t-i,£t) G i C a i _ i ( 5 t - i , x t ) } 

= ^ o t - i ^ t - l . X t ) x X t + 1 , 

/<t(zt-i,£t,£t+i) = { ( 5 t - i , x t , 5 t + i ) : (xt,xt+1) G J C a t ( 5 t , 5 t + i ) } 

= X * - X x Kat(xt,xt+1) 

and let us write (14) as follow 

- < x t - i , xl_t > + < xt,0> + < xt+1, xt+1 > > 0 , 

(xt-i,xt) G Ka^xt-i^xt) , (xt,xt+i) G Kat(xt,xt+i) (15) 

Then using Theorem 1.3.2 and Theorem II.3.10 in [1] we have obviously 
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{-x*t_x,Q,x*t+l) £ [Kt-i{xt-i,xt,xt+i) nKt(xt-i,Xt,xt+i)]* 

= K^xt-uxt, xt+i) + K;(xt-uxt, xt+i) 

= K^ixt-uxt) x {0 } + {0} x K*at(xt,xt+1) 

After all these the vector ( — x l _ t , 0, x * + 1 ) can be represented in the form: 

_ r * — — r 1 * fl — r 1 * — r 2 * r* — r 2 * 

( - x j * ! , ^ 1 * ) G ^ ( 5 * - ! , ^ ) , (-x?,x?+1) G i ^ ^ m ) (16) 

The statements (16) are equivalent to the following statements 

a£_i = a;^! G o ^ f o 1 * , x*)), x\* G aj(a:? + 1, (5 t , z t +i ) ) 

Let us denote at-i o at by at and a T + 2 o at+\ by a t + i etc. Then the proof ends 
using these recurrent statements. 

Theorem 3. The formula (15) is valid for polyhedral multivalued mappings 
at, i = 0 , l , . . . , T — 1., without conditions (a),(b) of the theorem. 

Proof. Using Theorem 1.4.14 [1] instead of Theorem 1.3.2 and Theorem 
II.3.10 [1] is sufficient in polyhedral case. 

Theorem 4. Let the trajectory {xt}f=0 be the optimal trajectory for the 
problem (l)-(3) and Kat(xt,xt+i), KN(XO), KM(XT) be cones of tangent di­
rections for the convex multivalued mappings at, t = 0 , 1 , . . . ,T — 1, the sets 
N and M respectively. Then under the conditions of Theorem 2 for the tra­
jectory {xt}?=o t° be an optimal of the problem (l)-(3)it is necessary and 
sufficient that there exist some vectors x*e) x%, t = 0, ...,T, not equal to zero 
simultaneously, such that 

x*t ea*(x;+1;(xt,xt+i)), t = 0,...,T-l (17) 

x*T + x*e G dxg{xT), x*e £ K*M{xT) , 
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x*0 G K*N(x0) 

Proof. The proof is obtained from Theorem 1 and 2 taking into account 
that the inclusions XQ G (aT)*(xT\ (XO,XT)) a n d xt e at(x*+i'i (%t,%t+i))> t = 
0 , T — 1 are equivalent to each other. 

Theorem 5. Let the conditions of the Theorem 4 be valid and for each t 
the multivalued mapping at(x) be a closed set for all xt G X1. Then for the 
trajectory {xt}J^Q to be an optimal of the problem (l)-(3) it is necessary and 
sufficient that there exist some vectors x*e) x%, t = 0 ,1 , . . . ,T and the number 
A = 0,1, not equal to zero simultaneously, such that 

xt+i G dy*Wat(xt,x*t+1) ,x\ G dxWat{xuxl+l) , t = 0 , 1 , T - 1 

x*T + x*e G dxg(xT), x*e G K*M(xT) , 

Proof. I t is known that 

Wa(x,y*) = i n f { < y,y* >: y e a(x)} 
y 

a(x;y*) = {y G a(x) : < y,y* >= Wa(x,y*)} 

From Theorem I I I .2 .1 in [1] i f y G a(x,y*),z — (x,y) then a*(y*\z) = 
dxWa(x,y*). On the other hand From (17) we have 0 ^ ( 0 ; ^ ; (xt,xt+i)) ^ 0. 
Thus we can write 

a* fct+i; (%t, xt+i)) = dxWat(xt, x*t+1) (18) 

xt+i E at(xt,xt+1) (19) 

I t is clear that —Wa(x,y*) = s u p { - < y,y* > : y G a(s)} . Let for each i , the 
y 

multivalued mapping at(x) be a closed set for all x G X*. Then —Wa(x,y*) 
is a convex function wi th respect to y* and using Theorem II.3.11 in [1] we 
have 

9y(-Wa(x,y*)) =-a(x;y*) 
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Then Wa(x, •) is concave because of — Wa(x, •) is convex for all fixed x. From 
the definition of subdifferential of the concave functions we have 

dy.(Wa(x,y*)) = -dv*(-Wa(x,y*)) 

and thus dy*(Wa(x, y*)) = a(x\y*). Consequently, (19) can be written in the 
form 

xt+i G dy*Wat(xux*tJrl) (20) 

Finally using the formulae (18) and (20) the proof is completed. 

3. Duality 

For problem (Py) w i th convex structure dual problem are constructed us­
ing the theorems of duality of operations of addition and infimal convolution 
of convex function. This duality problem consist of the following: 

(PD) sup{-0*(4) + naT(xlz*T - x*e) + WM(x*e) + WN(x*0)} 

Theorem 6. I f the solutions XT and {XQ, Z t , x*e}, zT € dg(xx) satisfy the 
condition of the Theorem 1, then they are solutions of the direct (Pv) and 
dual (PD) problems, respectively and their values are equal to each other. 
Proof. The fact that XT is a solution of the direct problem (Pv) was proved 
in the Theorem 1. Study the remaining assertions. By the definition of a 
L C M the condition XQ € (aT)*(xT; (xo, XT)) of Theorem 1 is equivalent to the 
inequality 

— < XQ, XO — XQ > + < xT, XT — XT > > 0, V ( x 0 ) XT) E gph aT 

This means that 

(XQ,XT) G dom fla (21) 

where dom Q,a = { ( X Q , X t ) : Q,a(xQ,xT) > — oo}. Further, since [1],[3], 
dg(xT) C dom g* i t is clear, that 

zT G dom g* (22) 
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Consequently i t follows from (21) and (22) that {x*0,zT,x*e} is an admissible 
solution. I t remains to show that {XQ, Z t , x*e} is optimal solution. By the 
Lemma III .2 .2 . in [1] 

flaT(x*0,zT - < x*0,x0 >= WaT(x0,zT - x*e) 

Here WaT(x0,zT - x*e) =< xT, z T - x*e> and so 

QaT(x*Q, Z*T - X * E ) = < X T , Z T ~ X * E > - < XQ , XQ > (23) 

On the other hand the inclusions x*Q G K*N(xa), x*e G KM{xT) imply that 

WN(x*0)=<x*Q,x0>, WM(x*e)=<x*e>xT,> (24) 

respectively. Now, Note that zT G dg(xT) is equivalent wi th the inequality 

g*(zT) = < x T , z T > -g{xT) (25) 

Then taking into account (21)-(25) i t is not hard to see that 

-g*(zT) + naT(x*0,zT - x*e) + WM(xt) + WN(x*0) = g(xT). 

The proof is completed. 
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