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SOME R E S U L T S ON A RIEMANNIAN SUBMERSION 

H. Mete TAŞTAN 

Abstract 

In this paper, we develop some well-known results given by O'Neill 
[6], Gray [3] and Escobales [1] and obtain a few new results by using them. 

1. Introduction 

Let M and B be smooth Riemannian manifolds. A Riemannian 
submersion ;r : M —» i? is a mapping of M onto B satisfying the 
following axioms; 

51. it has maximal rank; 
that is, each derivative map it„ of it is onto. Hence, for each q G B , 
7T~[ is a submanifold of M of dimension dim M —dimB where the 

submanifolds 7t~x are called fibers of M .A vector field on M is called 
vertical if it is tangent to a fiber and horizontal if orthogonal to fiber. 

52. 7Tt preserves lengths of horizontal vectors. 

Given a Riemannian submersion K'.M-^>B we denote by v the vector 
subbundle of TM defined by the foliation of M by the fibers of 7t. % 
denote the complementary distribution of v in TM determined by the 
metric on M. 

Recall that if p e M where M is any manifold, then TpM denotes 
the tangent space of M at p. Following O'Neill [6] we define the tensor T 
of type (1,2) for arbitrary vector fields E and F by 

TEF=hVvEvF + vVvEhF 



where vE, HE, etc. denote the vertical and horizontal projections of the 
vector field E. O'Neill has described the following three properties of the 
tensor T: 

(1) TE is a skew-symmetric linear operator on a tangent space of M and 
reversing horizontal and vertical subspaces. 

(2) TE = TyE, that is; T is vertical. 

(3) For vertical vector fields V and W, T is symmetric, i.e., 
TyW = TWV. 

In fact, along a fiber, T is the second fundamental form of the fiber provided 
we restrict ourselves to vertical vector fields. 

Now, we simply dualize the definition of T by reversing v and % define 
the integrability tensor A as follows. For arbitrary vector fields E mdF, 

AEF = hVtlEvF + WtlEhF 

(1') A E is a skew-symmetric operator on TM reversing the horizontal and 
vertical subspaces. 

(2') AE = AhE, that is; A is horizontal. 

(3') For X,Y horizontal A is alternating, i.e., AXY = -AYX. 

2. The properties of vertical and horizontal distributions 

Lemma 2.1 The vertical distribution V '. TM -> v(TM)is involutive. 
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Proof. Let V, W e v(TM), we must show that [V, W] e v(TM) that is, 

ñ[V,W] = 0. 

h[V,W^ = %V'VW — fiV'WV where V is the Riemannian connection on 
M. By the definition of T, HVVW = TVW and fNWV = TWV . Hence 
h[V,W] = TvW-TwV = 0. 

Definition. A basic vector field is a horizontal vector field X which is 
/T—related to a vector field Xt on B, i.e., izJXp=X1tn^ for all 

p e M. 

Lemma 2.2 I f X and Fare basic vector fields on M, then 

1. {xj) = {x,x)o7U 

2. h [X, F] is basic and is 7T - related [ X , , 7» ] 

3. # V X 7 is basic and is # —related V* x Y t 

where V* is the Riemannian connection on B. The proofs of these results 
are found in O'Neill [6]. 

Lemma 2.3 Let Z. be a basic vector field on M corresponding Z. on B. 

Suppose for a horizontal vector field X, (X,Z¡)p = (X,Z¡) , for all such 

Z¡ and for any p,p' e 7T~{ (q) where ^ e 5 . Then n^X is a well-defined 
vector field on B. In particular X is basic. 
See R.H. Escóbales [1]. 

Lemma 2.4 Let X and 7 be horizontal vector fields, V and J^be vertical 
vector fields. Then each of the following holds: 

(1) AxY = ±v[X,Y] 
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(2) VVW = TVW + V'yW , where V denotes the Riemannian connection 
along a fiber with respect to the induced metric. 
(3) a)VyX = hVyX + TyX 

b) If X is basic, KVrX = AXV 
(4) VxV = AxV + vVxV 
(5) VXY = HVXY + AXY 

The proofs of these results are found in 0'Neill[6] and R.H. Escobales[l]. 

Corollary 2.1 If X and Y are basic vector fields and V is vertical, then 

V(X,Y)=0. 
Proof: V(X,Y) = <V FX,F> + (X,VVY) = (tffyX,Y) + (X,hVvX) 

Since X and Fare basic. From Lemma 4 3b) we have 
{WyXJ) + (X,hVvX) = (AXV,Y) + (AYX,X) 
Now, if we use ( l ' ) we have 
= -(AxY,V)-(AYX,V), by the property (3') of A , 
-AXY - AYX = 0 and it follows. 

Corollary 2.2 Horizontal distribution is involutive if and only if A = 0. 

Proof. => Suppose horizontal distribution is involutive, that is; for any 
horizontal X and F, [ ^ , F ] is horizontal. We must show that AXE = 0, 
for any vector field E. 

From Lemma 4 -1) AXY = —v[X,Y]=0. Thus, AX%E = 0. 

On the other hand, for any horizontal Z ; 
(AxvE,Z) = -(AxZ,vE) = ̂ implies AxvE = 0, since it is horizontal. 
Finally AXE = Ax (KE + vE) = AxhE + AxvE = QimpliesA = 0. 
<= Now, i f A is identically zero, for any horizontal X and F 
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O = AXY = -v[X, Y] implies [X, Y] is horizontal, that is; horizontal 

distribution is involutive. 

3. Covariant derivatives of T and A 

Lemma 3.1 I f X and Fare horizontal and V and W are vertical, then 

(a) ( V K A ) w = -A,yW (b) ( V x A ) w = -AKxW 

(c) ( V x T ) y = - T A v y (d) ( V F T ) y = -TTyY 

Proof. We will only prove (c) since the proofs of others are similar. Let E 
be an arbitrary vector field on M. Then 

( V ^ T ) y E = Vx (TYE) - TVxY (E) - T y (VXE) since T is vertical, 

TYE = 0,TY(VXE) = 0, and from Lemma 2.4-(5) 

T v A E ) = THvAE) = T * A E ) ' h e n c e (VxT)rE = -TAAE) 
and it follows. 

Corollary 3.1 a) I f A is parallel, then A is identically zero, i.e., for 
aWEeTM, (VEA) = 0 implies A = 0 . 

b) I f T is parallel, then T is identically zero, i.e., ( V £ T ) = 0 implies 
T=0 . 
The proofs of these results can be found in R.H. Escóbales [1} 

Lemma 3.2 I f X,Y,Z,H are horizontal vector fields and U,V,W,F 
are vertical, then 

(a) ( ( V ^ A ^ V,W) = < V, AXW) - {TVW, AXV) 

(b) < ( V x A ) r V,W) = (AXV,AYW) - (AXW,AYV) 

(<0 <(VxA) y Z,H) - (AXZ, AYH) - (AXH,AYZ) 
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(d) < ( V I / A ) F ^ , F > = 0 

Proof. We will only prove b) since the proofs of others are similar. 

( V , A ) Y V = VX (AYV) - AVYX (Y) - AY (VXV) 

Hence 
((VXA\ V,W) = (Vx (AYV),W) -(AVXY(V),W) - < A Y (VXY),W) 

= VX{AYV,W) - (AYV,VXW) - < A V ^ Y ( V ) , W ) - < A Y (AXV),W) 

where, (AYV,W) = 0 , ( A V ^ Y (V),W) = 0 since A reverses the horizontal 
and vertical subspaces and (AYV,VXW) = {AYV,AXW) since AYV is 
horizontal and HVXW = AXW, on the other hand 
- < A Y (AXV),W) = {AXV,AYW) since A is skew-symmetric, thus the 
result follows. 

Lemma 3.3 I f X,Y,Z,H are horizontal vector fields and U,V,W,F 
are vertical, then 

(a) ((VXT)YY,Z) =(AXY,TVZ)-(AXZ,TVY) 

(b) ((V^X X,Y) = {TVX,TVY) - { T V X , T J ) 

(c) {(S/VT)Y W,F) = {TVW,TVF) - ( T ^ F , T VW) 

(d) {{yxT)yZ,H) = Q 

Proof. We will only prove a) since the proofs of others are similar. 

( V X T ) VY = Vx (TyY) - TVxV (Y) - Tv (VXY) 
Hence 

((VxT)y Y,Z) = (Vx (T>7) ,Z> - <T V A . K (Y),Z) - <Ty {VXY),Z) 

= VX(TVY,Z) - (TVY,VXZ) - (TVxV (Y),Z)- (TV (AXY),Z) 
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where (TVY,Z) = 0,(Tv^KF,Z) = 0 since T reverses the vertical and 
horizontal subspaces and (TVY, VXZ) = (TVY, AXZ) since TyY is 
vertical and v ( V X Z ) = AXZ from Lemma 2.4-(5). On the other hand 
—(Tv ( A X F ) , Z ) = (TVZ, AXY) since T is skew-symmetric, thus it 
follows. 

Lemma 3.4 I f X and Y are horizontal, and V and W are vertical, then; 

(a) < ( V E A ) x Y , V ) is alternate in X and Y. 

(b) < (V E T) v W,X) is symmetric in V and W. 

Proof. Expand the covariant derivatives and use the properties of T and A. 

Lemma 3.5 I f V is vertical and i2 denotes the cyclic sum of over the 
horizontal vector fields X, Y, Z, then 

a((VzA)xY,V)=Q(AxY,TyZ) 

Proof. See O'Neill [6]. 

Corollary 3.2 I f U, V and W are vertical and Q. denotes the cyclic sum 
of over U, V and W, then 

i 2 ( v ( V c / T ) K f f ) = 0 

Proof. For any vertical vector field F, we compute that 

<KT) K W + (V^TX V + (VyT)w U,F) and applying Lemma 3.3-(c) 
the result follows. 

Corollary 3.3 I f Q. denotes the cyclic sum of over the horizontal vector 
fields X,Y,Z and H horizontal, then 
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Q < ( V x A ) r Z,H) = 2n(AxZ,AYH) 

Proof. The result easily follows from the from Lemma 3.2 (c). 

4. Fundamental Equations 

Let 9i denote the curvature tensor of M, and 9{* the curvature tensor of 
B. Since there is no danger of ambiguity, we will denote the horizontal lift 
of 9T by 91* as well. Following O'Neill [6] we set 

where h. are horizontal vectors such that n„ (/?,) = h*. 

Theorem 4.1 I f U,V,W,F are vertical vector fields and X is 
horizontal, then 

(a) (KUVW,F) = (<kuvW,F) - {TVW,TYF) + (TyWJvF) 
(b) WUVW,X) = ((VJ)V W,X) -((VVT)V W,X) 

where $H is the curvature tensor of the fiber 7T at p. 

Proof. (These equations relate the geometry of M to those of the fibers 
n"X (#) ; they are clearly the Gauss and Codazzi equations of the fibers.) 
The proof is the same as that of a single submanifold. 

Theorem 4.2 If X, Y, Z, H are horizontal vector fields and V is vertical, 
then 
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(a) 

WxrZ,!!) = (WXYZ,H) ~ 2(AXY,AZH) + (AYZ,AXH) + (AZX,AYH) 

(b) 

WxyZn = <(VZA)^ Y,V) + (AXY,TVZ) - (AYZ,7yX) - (AzX,TyY) 

Proof. See O'Neill [6]. 
Theorem 4.3 If X and Fare horizontal vector fields, and V and W are 
vertical, then 
(a) (nxyY,W) = <(V X T) K W,Y) + <(V F A) X Y,W) 

-(TVX,TWY) + (AXV,AYW) 
(b) (KmX,Y) = ({VvA)x Y,W) - ({VwA)x Y,V) + (AXV,AYW) 

-(AXW,AYV)-(TVX,7WY) + <T^X,TKF> 

Proof. See O'Neill [6]. 

In the case of sectional curvature, the proofs of these theorems become 
trivial. For the tangent vectors a and b (assumed to be linearly 
independent), we will denote by P f l£the tangent plane which is spanned by 
them. 

Corollary 4.1 Let n: M —> B be a submersion and let K ,Kt and ft 
denote the sectional curvatures of M, B and the fibers respectively. I f x 
and y are horizontal vectors at a point of M and v and w are vertical, 
then; 

(V A W,V A W) 
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(2) K[if 
(x,x){v,v) 

, 3 ) , ( P v ) = , . ( P „ , ) - ^ | ; W l , e r e ^ , . W . 

Proof. (The first equation above is the formulation of Gauss equation for 
the fibers.) All of them follow from the following well-known equation; 

( V A W , V A W ) 

We have obtained in Lemma 3.1, Lemma 3.2 and Lemma 3.3 the covariant 
derivatives of the fundamental tensors T and A; that is, we have expressed 
the tensors ( V / T ) F and ( V £ A ) f in T and A. 

Now, we consider ( ( V £ T ) G,L). 
Since it can be written two different types of vector fields, horizontal and 
vertical, instead of each vector fields E,F,G, and L , it follows that we can 
state ( ( V £ T ) G,L) in exactly sixteen different types; i.e., we can say the 
covariant derivatives VT of T in sixteen different type. The eight of them 
can be expressed by using Lemma 3.1, and the three one of others can be 
expressed by using Lemma 3.3 in T and A. But , the other five types may 
not be possible to write in T and A by using the Lemma 3.1 and Lemma 
3.3. For instance, we can not state ((VxT)yW,Y) in T and A. Similar 
claims are also valid for the fundamental tensor A. In other ways, we can 
not state ((VyA)xY,W) in T and A. However, we find a relation between 

<( VxT)y W, Y) and <(Vv A)x Y, W), and state it in Theorem 4.4 below. 

Theorem 4.4 I f V and W vertical vector fields and X and Fare 
horizontal, then 
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<(V X T) K W,Y) - <(VYT)y W,X) = - < ( V K A ) X Y,W) - < ( V w h \ X,V) 

Proof. From the first Bianchi Identity we have that 

(MXVY + 9iVYX + KYXV, W) = 0 

Hence we can write 

<9i xyY,W) + (WVYX,W) + (MYXV,W) = 0.. .(1) 

where, we use the Theorem 4.3-(a). Now we have that 

WXVY,W) = ((VXT\ W,Y) + < ( V K A ) x Y,W) - (TVX,TWY) + {AXV,AYW 
...(2), 
and by the symmetries of curvature tensor , we obtain 

(MVYX,W) = -WyyX,W) = - < ( V r T ) K W,X) - < ( V K A ) y X,W) 

+(TVY,TWX)-(AYV,AXW)...(3) 
On the other hand, again, by using the symmetries of curvature tensor 5R, 
we have that 

{SRYXV,W) = -(iH.XYV,W) = -(1RVWX,Y) and use the Theorem 4.3-(b) 

we have 

{KYXV,W) = - < ( V F A ) x Y,W) + ((VwA)x Y,V) - (AXV,AYW) 

+(AXW,AYV) + (TVX,TWY) - (TWXJVY) ...(4) 

Putting (2),(3) and (4) in (1) the result follows. 
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