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SOME RESULTS ON A RIEMANNIAN SUBMERSION

H. Mete TASTAN

Abstract

In this paper, we develop some well-known results given by O’Neill
[6], Gray [3] and Escobales [1] and obtain a few new results by using them.

1. Introduction

Let M and B be smooth Riemannian manifolds. A Riemannian
submersion 77 :M — B is a mapping of M onto Bsatisfying the
following axioms;

S1. 7 has maximal rank;

that is, each derivative map =z, of x is onto. Hence, for each g€ B,
! (q) is a submanifold of M of dimension dim M —dim B where the
submanifolds 77" (q) are called fibers of M .A vector field on M is called

vertical if it is tangent to a fiber and horizontal if orthogonal to fiber.

S2. 7, preserves lengths of horizontal vectors.

Given a Riemannian submersion 77 : M — B we denote by v the vector
subbundle of TM defined by the foliation of M by the fibers of 7. A
denote the complementary distribution of v in TM determined by the
metric on M .

Recall that if p € M where M is any manifold, then 7, M denotes

the tangent space of M at p.Following O’Neill [6] we define the tensor T
of type (1,2) for arbitrary vector fields £ and F' by

T,F =hV,,vF + W hF



where VE AE , etc. denote the vertical and horizontal projections of the

vector field E. O’Neill has described the following three properties of the
tensor T':

(1) T, is a skew-symmetric linear operator on a tangent space of M and
reversing horizontal and vertical subspaces.
) T, =T, thatis; T is vertical.

(3) For vertical vector fields ¥ and W, T is symmetric, i.e.,

T, W =T,V.

In fact, along a fiber, T is the second fundamental form of the fiber provided
we restrict ourselves to vertical vector fields.

Now, we simply dualize the definition of T by reversing v and 7 define
the integrability tensor A as follows. For arbitrary vector fields £ and F',

A F =hV,,vF + W, hF

(') A} is a skew-symmetric operator on TM reversing the horizontal and
vertical subspaces. ‘

(2') A =A,,, that is; A is horizontal,

(3')For X,Y horizontal A is alternating, ie., A ¥ =—-A,X.

2. The properties of vertical and horizontal distributions

Lemma 2.1 The vertical distribution v : TM — v(T'M)is involutive.
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Proof. Let V,W e v(TM), we must show that [V, W] e v(TM) thatis,

alv.w]=0.

h[V,W] =hV,W —hV,V where V is the Riemannian connection on
M . By the definition of T, AV, W =T, W and AV, V =T,V . Hence
AV W]|=T,W -T,V =0,

Definition. 4 basic vector field is a horizontal vector field X which is

7 —related to a vector field X, on B, ie, 77X, =X*ﬂ(p) for all

peM. | .
Lemma 2.2 If X and Y are basic vector fields on M , then
LAX,Y)=(X,,Y)onx

2. h[X,Y] is basic and is 77 —related [X*,K]

3. hV ,Y is basic and is 77 —related V*X‘Y*

where V" is the Riemannian connection on B. The proofs of these results
are found in O’Neill [6].

Lemma 2.3 Let Z; be a basic vector field on M corresponding Z, on B.

Suppose for a horizontal vector field X', (X,Z,), =(X,Z,) - for all such
Z, andforany p,p'e a (q) where g € B. Then 7,.X is a well-defined

vector field on B. In particular X is basic.
See R.H. Escobales [1].

Lemma 2.4 Let X and Y be horizontal vector fields, 7 and W be vertical
vector fields. Then each ofithe following holds:

o) AXY=%V[X,Y]
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@ V,W=T,W+ ‘A7,,W , where V denotes the Riemannian connection
along a fiber with respect to the induced metric.
3)a)V,X=hV, X+T,X
b) If X isbasic, AV, X =A,V
@ VIV =AFV+W,V
(5) V,Y=aV,Y+A,Y
The proofs of these results are found in O’Neill[6] and R.H. Escobales[1].

Corollary 2.1 If X and Y are basic vector fields and V' is vertical, then
V{X,Y)=0.
Proof: V(X,Y)=(V, X,Y)+(X,V,Y)=(aV X,Y)+(X,AV X)

Since X and Y are basic. From Lemma 4 3b) we have

(hV, X,Y)+(X,hV,X) =(A,V.,Y)+{A, X, X)

Now, if we use (l') we have

=—(A,Y,V)-(A,X,V), by the property (3') of A,
—-A,Y — A, X =0 and it follows.

Corollary 2.2 Horizontal distribution is involutive if and only if A =0.

Proof. = Suppose horizontal distribution is involutive, that is; for any
horizontal X and Y, [X ,Y] is horizontal. We must show that A , E =0,

for any vector field FE.
FromLemma4-1) A,Y = —;:V[X, Y] =0. Thus, A, iE =0.

On the other hand, for any horizontal Z ;

(AyWE,Z)=—(AZ,vE) =0impliesA ,vE = 0, since it is horizontal.
Finally A E = A, (RE +VE)= A, hE + A, vE = OimpliesA = 0.
<=Now, if A is identically zero, for any horizontal X and Y
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0=A,Y= —;—V[X Y ] implieS[X Y ] is horizontal, that is; horizontal

distribution is involutive.
3. Covariant derivatives of T and A

Lemma 3.1If X and Y are horizontaland V and W are vertical, then

(a) (VVA)W = _AT,,W (b) (VXA)W = _AAxW
© (VXT)Y = _TA_\,Y (d) (VVT)Y = _TTvY

Proof. We will only prove (c) since the proofs of others are similar. Let £
be an arbitrary vector field on ‘M. Then

(ViT), E=V (T,E)-T, ,(E)-T,(V,E) since T is vertical,
T,E=0,T,(V,E)=0, and from  Lemma  2.4-(5)
Ty v (E)=T, 1, (E)=T, (E) , hence (V,T),E=-T, ,(E)

and it follows.

Corollary 3.1 a) If A is parallel, then A is identically zero, i.e., for
alEeTM, (VEA) =0 implies A=0.

b) If T is parallel, then T is identically zero, i.e., (V ET) =0 implies

T=0.

The proofs of these results can be found in R.H. Escobales [1}

Lemma 3.2 If X,Y,Z H are horizontal vector fields and U,V ,W F
are vertical, then

@ (V,A) VW) =(T,V,AW) (T, W,A,V)
) (VLA) VW) =(AV, A W) — (AW, AV
© (V4A), Z,H) =(A,Z,AH)— (A H,A,Z)
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@ (V,A), W, F)y=0
Proof. We will only prove b) since the proofs of others are similar.

(V4A),V =V, (A,V) — Ay« (Y)-A,(V,FV)
Hence

(VA), VY=V (A )W) =(Ay (V). W) —(Ay (VY),IV)

=V AV W)= (A, V W) - <AVXY (V),W) —(Ay (AXV)’W>

where, (A,V,W) =0, (AVXY ( V), W) =0 since A reverses the horizontal
and vertical subspaces and (A, V.,V W) =(A,V,A W) since A,V is
horizontal and AV W =AW, on the other hand
—(A, (AXV),W> =(A,V,A,W) since A is skew-symmetric, thus the

result follows.

Lemma 33 If X,Y,Z,H are horizontal vector fields and U,V , W, F
are vertical, then

@ ((ViT),Y,Z)=(AY,T,Z)—(AZ,T,Y)
® {(V,T), X,¥)=(T,X,T,Y)—(T,X,T,Y)
© (VyT), W,F)y=(T,W,T,F)~(T,F,T, W)
@ (V,T),Z,H)=0

Proof. We will only prove a) since the proofs of others are similar.

(ViT),Y =V, (T,¥) =Ty, (¥)-T,(V,Y)
Hence

(V4T), 1.2 =V 4 (T,7),2) (T, (1).2) (T, (V,¥),2)
=V (T,Y,2)~(T, Y,V ,Z)~(T, ,(Y),2) (T, (A,¥),2)
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where (T,Y,Z) =0Ty ,¥ ,Z)=0 since T reverses the vertical and
horizontal subspaces and (T,Y,V ,Z)=(T,Y,A,Z) since T, Y is
vertical and v(V,Z)=A,Z from Lemma 2.4-(5). On the other hand
—T, (AXY),Z) =(T,Z,A,Y) since T is skew-symmetric, thus it

follows.

Lemma 3.4 If X and Y are horizontal, and /' and W are vertical, then;

(a) ((VEA)X Y,V) is alternate in X and Y.
(b) ((VET)V W,X) is symmetricin ¥ and W .

Proof. Expand the covariant derivatives and use the properties of T and A.

Lemma 3.5 If V is vertical and {) denotes the cyclic sum of over the
horizontal vector fields X,Y,Z, then

Q(V,4), Y, Vy=(A,Y,T,Z)
Proof. See O*Neill [6].

Corollary 3.2 If U,V and W are vertical and €2 denotes the cyclic sum
ofover U,V and W, then

Q(v(v,T),w)=0

Proof. For any vertical vector field F', we compute that

(V,T), W +(V,T),V+(V,T), U,F) and applying Lemma 3.3-(c)

the result follows.

Corollary 3.3 If € denotes the cyclic sum of over the horizontal vector
fields X,Y,Z and H horizontal, then
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A(VyA), Z,H)=2AZ,AH)

Proof. The result easily follows from the from Lemma 3.2 (c).

4. Fundamental Equations

Let R denote the curvature tensor of M , and R* the curvature tensor of
B.Since there is no danger of ambiguity, we will denote the horizontal lift

of R* by R* as well. Following O’Neill [6] we set

<ER*"|”2h3 ’ h4> = <£R*h1'h$ h; ’ h:)

where A, are horizontal vectors such that 7, (hi) =h.

Theorem 4.1 If U,V,W,F are vertical vector fields and X is
horizontal, then

@) (R, W,F)=(R,W,F)y—(T,W,T,Fy+(T,W,T,F)
®) (R, W, X)=((V,T), W, X)-((V,T), W,X)

where R is the curvature tensor of the fiber 7' (71'( p)) atp.

Proof. (These equations relate the geometry of M to those of the fibers
7 (q) ; they are clearly the Gauss and Codazzi equations of the fibers.)
The proof is the same as that of a single submanifold.

Theorem 4.2 If X,Y,Z,H are horizontal vector fields and V is vertical,
then
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(a) |
(R Z, ) = (R, Z, HY —2AA,Y,AH) +(A,Z,A H)+ (A, X,A,H)

(b)
(R ZV)=((V,A), Y, V) +(AY,T,Z)~(A,Z,T,X)~(A,X,T,Y)

Proof. See O’Neill [6].
Theorem 4.3 If X and Y are horizontal vector fields, and V' and W are
vertical, then

@) (R, Y. W)=(V,T), W.Y)+{(V,A), YW
~T, X, T,Y)+(A,V,AW)

® (R, X.7)=((V,A), Y. W)= (VyA) Y.V)+{AV A W)
~(A W, AVY—(T,X,T,Y)+(T,X,T,Y)

Proof. See O’Neill [6].

In the case of sectional curvature, the proofs of these theorems become
trivial. For the tangent vectors ¢ and b (assumed to be linearly

independent), we will denote by P, the tangent plane which is spanned by
them.

Corollary 4.1 Let 7: M — B be a submersion and let x,x, and K

denote the sectional curvatures of M, B and the fibers respectively. If x
and y are horizontal vectors at a point of M and v and w are vertical,

then;

Ty, T w) (T w,Tw)
VAW,V AW)

o «(P,,)=%(2,)
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_ ((VxT)v v,x) + (A v,A v)—(T x, T x)

@ K(P'W) B (x, x){(v,v)
(A, y,AY)
3) K(ny) =K, (Px‘y‘ ) - (Jj/\';jx /\))))> , where X, =7, (x)

Proof. (The first equation above is the formulation of Gauss equation for
the fibers.) All of them follow from the following well-known equation;

K(va) = <SRVWV’ w>
(VAW, VA W)

We have obtained in Lemma 3.1, Lemma 3.2 and Lemma 3.3 the covariant
derivatives of the fundamental tensors T and A; that is, we have expressed

the tensors (VET)F and (VEA)F in T and A.
Now, we consider ((VET)F G,L).
Since it can be written two different types of vector fields, horizontal and

vertical, instead of each vector fields E,F,G, and L, it follows that we can
state ((V ET) - G, L) inexactly sixteen different types; i.e., we can say the

covariant derivatives VT of T in sixteen different type. The eight of them
can be expressed by using Lemma 3.1, and the three one of others can be
expressed by using Lemma 3.3 in T and A. But , the other five types may
not be possible to write in T and A by using the Lemma 3.1 and Lemma

3.3, For instance, we can not state ((V XT)V W.,Y) in T and A. Similar

claims are also valid for the fundamental tensor A. In other ways, we can
not state ((V ,,A) ne W) in T and A. However, we find a relation between

((VXT)V W.,Y) and ((V,,A)X Y, W), and state it in Theorem 4.4 below.

Theorem 4.4 If V and W vertical vector fields and X and Y are
horizontal, then
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(V,T), W0 -(V,T), W, X)=—(V,A), Y.W)=((V,A), X.V)

Proof. From the first Bianchi Identity we have that
(R, Y +R,, X +R,V,W)=0

Hence we can write

(R YWY+ (R, X W)+ (R, V. W)=0..1)
where, we use the Theorem 4.3-(a). Now we have that

Ry Y ) =((V,T), W1y +{(V,A), Y, W) ~(T, X, T, V) + (A, AW |

), z;

and by the symmetries of curvature tensor R, we obtain

(R, X W) =—(Ry, X,W)=~(V,T), W,X)—((V,A), X,W)
T, Y, T, X)—(A,V,A,W)..(3)

On the other hand, again, by using the symmetries of curvature tensor ‘R,

we have that

(fR‘YXV, WY=—R,,V,W)=—R,,X,Y) and use the Theorem 4.3-(b)

"~ we have

RV W) =~(V, A), L) +{(V,A), Y, V)= (AW, A W)
HALW, AV +(T,X,T,Y)—(T, X,T,Y)..(4)

Putting (2),(3) and (4) in (1) the result follows.
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