İstanbul Üniv. Fen Fak. Mat.Fiz.Astro. Derg. **1** (2004-2005), 115-126

SOME RESULTS ON A RIEMANNIAN SUBMERSION

H. Mete TAŞTAN

Abstract

In this paper, we develop some well-known results given by O'Neill [6], Gray [3] and Escobales [1] and obtain a few new results by using them.

1. Introduction

Let *M* and *B* be smooth Riemannian manifolds. A Riemannian submersion $\pi : M \to B$ is a mapping of M onto B satisfying the following axioms;

51. π has maximal rank;

that is, each derivative map π , of π is onto. Hence, for each $q \in B$, $\pi^{-1}(q)$ is a submanifold of M of dimension $\dim M - \dim B$ where the submanifolds $\pi^{-1}(q)$ are called *fibers* of M . A vector field on M is called *vertical* if it is tangent to a fiber and *horizontal* if orthogonal to fiber.

52. π , preserves lengths of horizontal vectors.

Given a Riemannian submersion $\pi : M \to B$ we denote by ν the vector subbundle of TM defined by the foliation of M by the fibers of π . \hbar denote the complementary distribution of ν in TM determined by the metric on *M.*

Recall that if $p \in M$ where *M* is any manifold, then T_pM denotes the tangent space of M at p . Following O'Neill [6] we define the tensor T of type (1,2) for arbitrary vector fields *E* and *F* by

 $T_{E}F=\hbar\nabla_{vE}vF+\nu\nabla_{vE}\hbar F$

where $VE, \hbar E$, etc. denote the vertical and horizontal projections of the vector field *E.* O'Neill has described the following three properties of the tensor T:

CONTROLSOMERS

(1) T_E is a skew-symmetric linear operator on a tangent space of *M* and reversing horizontal and vertical subspaces.

(2) $T_E = T_{VE}$, that is; T is vertical.

(3) For vertical vector fields *V* and *W,* T is symmetric, i.e., $T_{\nu}W = T_{\nu}V$.

In fact, along a fiber, T is the second fundamental form of the fiber provided we restrict ourselves to vertical vector fields.

Now, we simply dualize the definition of T by reversing ν and \hbar define *the integrability tensor* A as follows. For arbitrary vector fields E and F ,

 $A_{E}F = \hbar \nabla_{\mu E} \nu F + \nu \nabla_{\mu E} \hbar F$

 $(1')$ A_E is a skew-symmetric operator on TM reversing the horizontal and vertical subspaces.

 $(2')$ $A_E = A_{hE}$, that is; A is horizontal.

(3') For X, Y horizontal A is alternating, i.e., $A_X Y = -A_Y X$.

2. The properties of vertical and horizontal distributions

Lemma 2.1 The vertical distribution $\nu : TM \rightarrow \nu(TM)$ is involutive.

Proof. Let $V, W \in V(TM)$, we must show that $[V, W] \in V(TM)$ that is,

 $\hbar[V,W] = 0$. $\hbar[V,W] = \hbar \nabla_{V} W - \hbar \nabla_{W} V$ where ∇ is the Riemannian connection on *M*. By the definition of T, $\hbar \nabla_{V} W = T_{V}W$ and $\hbar \nabla_{W} V = T_{W}V$. Hence $\hbar[V,W] = T_{V}W - T_{W}V = 0$.

Definition. *A basic vector field* is a horizontal vector field *X* which is π -related to a vector field X_* on B, i.e., $\pi_* X_p = X_{*\pi(n)}$ for all $p \in M$.

Lemma 2.2 If X and Y are basic vector fields on M , then

- 1. $\langle X,Y\rangle = \langle X,Y\rangle \circ \pi$
- 2. $\hbar [X, Y]$ is basic and is π related $[X_*, Y_*]$

3. $\hbar \nabla_{Y} Y$ is basic and is π – related $\nabla^{*}_{X} Y_{*}$

where ∇^* is the Riemannian connection on *B*. The proofs of these results are found in O'Neill [6].

Lemma 2.3 Let Z_i be a basic vector field on M corresponding Z_i on B. Suppose for a horizontal vector field $X, \langle X, Z_i \rangle_p = \langle X, Z_i \rangle_p$ for all such Z_i and for any $p, p' \in \pi^{-1}(q)$ where $q \in B$. Then $\pi_* X$ is a well-defined vector field on *B.* In particular *X* is basic. See R.H. Escobales [1].

Lemma 2.4 Let X and Y be horizontal vector fields, V and W be vertical vector fields. Then each of the following holds:

$$
(1) AXY = \frac{1}{2} \nu [X, Y]
$$

(2) $\nabla_{V}W = \Gamma_{V}W + \hat{\nabla}_{V}W$, where $\hat{\nabla}$ denotes the Riemannian connection along a fiber with respect to the induced metric. (3) a) $\nabla_V X = \hbar \nabla_V X + \mathbf{T}_V X$

b) If X is basic, $\hbar \nabla_V X = A_V V$

$$
(4) \nabla_X V = \mathbf{A}_X V + \nu \nabla_X V
$$

(5) $\nabla_X Y = \hbar \nabla_X Y + A_X Y$

The proofs of these results are found in O'Neill[6] and R.H. Escobales[1].

Corollary 2.1 If X and Y are basic vector fields and V is vertical, then **Corollary** 2.1 If *X* and *Y* are basic vector fields and *V* is vertical, then

 $V(X, Y) = 0.$

Proof:
$$
V\langle X, Y\rangle = \langle \nabla_V X, Y\rangle + \langle X, \nabla_V Y\rangle = \langle \hbar \nabla_V X, Y\rangle + \langle X, \hbar \nabla_V X\rangle
$$

Since X and Y are basic. From Lemma $4\,$ 3b) we have $\langle \hbar \nabla_V X, Y \rangle + \langle X, \hbar \nabla_V X \rangle = \langle A_V V, Y \rangle + \langle A_V X, X \rangle$ Now, if we use $(1')$ we have $= -(A_{Y}Y, V) - (A_{Y}X, V)$, by the property (3') of A, $-A_YY - A_YX = 0$ and it follows.

Corollary 2.2 Horizontal distribution is involutive if and only if $A = 0$.

Proof. \Rightarrow Suppose horizontal distribution is involutive, that is; for any horizontal X and Y, $[X, Y]$ is horizontal. We must show that $A_x E = 0$, for any vector field *E.*

From Lemma 4 -1) $A_X Y = \frac{1}{2} \nu [X, Y] = 0$. Thus, $A_X \hbar E = 0$.

On the other hand, for any horizontal Z ; $\langle A_{X} V E, Z \rangle = -\langle A_{X} Z, V E \rangle = 0$ *implies* $A_{X} V E = 0$, since it is horizontal. Finally $A_X E = A_X (nE + VE) = A_X nE + A_X VE =$ Umplies $A \equiv 0$. \Leftarrow Now, if A is identically zero, for any horizontal X and Y

 $0 = A_X Y = \frac{1}{2} V[X, Y]$ *implies* $[X, Y]$ is horizontal, that is; horizontal distribution is involutive.

3. Covariant derivatives of T and A

Lemma 3.1 If X and Y are horizontal and V and W are vertical, then

(a) $(\nabla_{V} A)_{W} = -A_{T_{V}W}$ (b) $(\nabla_{X} A)_{W} = -A_{A_{V}W}$ (c) $(\nabla_{X} T)_{Y} = -T_{A_{Y}Y}$ (d) $(\nabla_{Y} T)_{Y} = -T_{T_{Y}Y}$

Proof. We will only prove (c) since the proofs of others are similar. Let *E* be an arbitrary vector field on *M*. Then

 $(\nabla_X \mathbf{T})_y E = \nabla_X (\mathbf{T}_Y E) - \mathbf{T}_{\nabla_Y Y}(E) - \mathbf{T}_Y (\nabla_X E)$ since **T** is vertical, $T_y E = 0, T_y (\nabla_y E) = 0$, and from Lemma 2.4-(5) $\mathbb{1}_{V_XY}(E) = \mathbb{1}_{V(V_XY)}(E) = \mathbb{1}_{A_XY}(E)$, hence $(V_X1)_YE = -\mathbb{1}_{A_XY}(E)$ and it follows.

Corollary 3.1 a) If A is parallel, then A is identically zero, i.e., for $a\mathbb{I}E \in TM$, $(\nabla_{E}A) = 0$ implies $A = 0$.

b) If **T** is parallel, then **T** is identically zero, i.e., $(\nabla_{E}T) = 0$ implies $T \equiv 0.$

The proofs of these results can be found in R.H. Escobales $[1]$

Lemma 3.2 If X, Y, Z, H are horizontal vector fields and U, V, W, F are vertical, then

(a)
$$
\langle (\nabla_U A)_X V, W \rangle = \langle T_U V, A_X W \rangle - \langle T_U W, A_X V \rangle
$$

\n(b) $\langle (\nabla_X A)_Y V, W \rangle = \langle A_X V, A_Y W \rangle - \langle A_X W, A_Y V \rangle$
\n(c) $\langle (\nabla_X A)_Y Z, H \rangle = \langle A_X Z, A_Y H \rangle - \langle A_X H, A_Y Z \rangle$

(d) $\langle (\nabla_{U} A)_{U} W, F \rangle = 0$

Proof. We will only prove b) since the proofs of others are similar.

$$
(\nabla_X A)_Y V = \nabla_X (A_Y V) - A_{\nabla_Y X} (Y) - A_Y (\nabla_X V)
$$

Hence

$$
\langle (\nabla_X A)_Y V, W \rangle = \langle \nabla_X (A_Y V), W \rangle - \langle A_{\nabla_X Y} (V), W \rangle - \langle A_Y (\nabla_X Y), W \rangle
$$

$$
= \nabla_X \langle A_Y V, W \rangle - \langle A_Y V, \nabla_X W \rangle - \langle A_{\nabla_Y Y} (V), W \rangle - \langle A_Y (A_X V), W \rangle
$$

where, $\langle A_v V, W \rangle = 0, \langle A_{v} V, W \rangle = 0$ since A reverses the horizontal and vertical subspaces and $\langle A_Y V, \nabla_X W \rangle = \langle A_Y V, A_X W \rangle$ since $A_Y V$ is horizontal and $\hbar \nabla_{Y}W = A_{Y}W$, on the other hand $-\langle A_{\nu}(A_{\nu}V),W\rangle = \langle A_{\nu}V, A_{\nu}W\rangle$ since A is skew-symmetric, thus the result follows.

Lemma 3.3 If X, Y, Z, H are horizontal vector fields and U, V, W, F are vertical, then

(a)
$$
\langle (\nabla_X \mathbf{T})_\nu Y, Z \rangle = \langle \mathbf{A}_X Y, \mathbf{T}_\nu Z \rangle - \langle \mathbf{A}_X Z, \mathbf{T}_\nu Y \rangle
$$

\n(b) $\langle (\nabla_U \mathbf{T})_\nu X, Y \rangle = \langle \mathbf{T}_U X, \mathbf{T}_\nu Y \rangle - \langle \mathbf{T}_\nu X, \mathbf{T}_U Y \rangle$
\n(c) $\langle (\nabla_U \mathbf{T})_\nu W, F \rangle = \langle \mathbf{T}_U W, \mathbf{T}_\nu F \rangle - \langle \mathbf{T}_U F, \mathbf{T}_\nu W \rangle$
\n(d) $\langle (\nabla_X T)_\nu Z, H \rangle = 0$

Proof. We will only prove a) since the proofs of others are similar.

$$
(\nabla_X \mathbf{T})_{\nu} Y = \nabla_X (\mathbf{T}_{\nu} Y) - \mathbf{T}_{\nabla_X \nu} (Y) - \mathbf{T}_{\nu} (\nabla_X Y)
$$

Hence

$$
\langle (\nabla_X \mathbf{T})_{\nu} Y, Z \rangle = \langle \nabla_X (\mathbf{T}_{\nu} Y), Z \rangle - \langle \mathbf{T}_{\nabla_X \nu} (Y), Z \rangle - \langle \mathbf{T}_{\nu} (\nabla_X Y), Z \rangle
$$

$$
= \nabla_X \langle \mathbf{T}_{\nu} Y, Z \rangle - \langle \mathbf{T}_{\nu} Y, \nabla_X Z \rangle - \langle \mathbf{T}_{\nabla_X \nu} (Y), Z \rangle - \langle \mathbf{T}_{\nu} (\mathbf{A}_X Y), Z \rangle
$$

where $\langle T_V Y, Z \rangle = 0, \langle T_{V \vee V} Y, Z \rangle = 0$ since **T** reverses the vertical and horizontal subspaces and $\langle T_V Y, \nabla_X Z \rangle = \langle T_V Y, A_X Z \rangle$ since $T_V Y$ is vertical and $V(\nabla_X Z) = A_X Z$ from Lemma 2.4-(5). On the other hand $-\langle T_V(A_X Y), Z \rangle = \langle T_V Z, A_X Y \rangle$ since **T** is skew-symmetric, thus it follows.

÷

Lemma 3.4 If X and Y are horizontal, and V and W are vertical, then;

(a) $\langle (\nabla_E \mathbf{A})_Y Y, Y \rangle$ is alternate in X and Y. **(b)** $\langle (\nabla_E \mathbf{T})_V W, X \rangle$ is symmetric in V and W.

Proof. Expand the covariant derivatives and use the properties of **T** and **A.**

Lemma 3.5 If V is vertical and Ω denotes the cyclic sum of over the horizontal vector fields X, Y, Z , then

$$
\Omega \langle (\nabla_Z A)_Y Y, V \rangle = \Omega \langle A_X Y, T_V Z \rangle
$$

Proof. See O'Neill [6].

Corollary 3.2 If U, V and W are vertical and Ω denotes the cyclic sum of over U, V and W , then

 $\Omega\left(\nu\left(\nabla_U \mathbf{T}\right)_V W\right) = 0$

Proof. For any vertical vector field *F*, we compute that

 $\langle (\nabla_U \mathbf{T})_\nu W + (\nabla_W \mathbf{T})_\nu V + (\nabla_V \mathbf{T})_\nu U, F \rangle$ and applying Lemma 3.3-(c) the result follows.

Corollary 3.3 If Ω denotes the cyclic sum of over the horizontal vector fields *X,Y,Z* and *H* horizontal, then

$$
\Omega \langle (\nabla_X A)_Y Z, H \rangle = 2.\Omega \langle A_X Z, A_Y H \rangle
$$

Proof. The result easily follows from the from Lemma 3.2 (c).

4. Fundamental Equations

Let \Re denote the curvature tensor of M , and \Re^* the curvature tensor of *B.* Since there is no danger of ambiguity, we will denote the horizontal lift of \mathbb{R}^* by \mathbb{R}^* as well. Following O'Neill [6] we set

$$
\langle \mathfrak{R}^*_{h_1h_2}h_3, h_4 \rangle = \langle \mathfrak{R}^*_{h_1^*h_2^*}h_3^*, h_4^* \rangle
$$

where h_i are horizontal vectors such that $\pi_*(h_i) = h_i^*$.

Theorem 4.1 If U, V, W, F are vertical vector fields and X is horizontal, then

(a)
$$
\langle \mathfrak{R}_{UV}W, F \rangle = \langle \mathfrak{R}_{UV}W, F \rangle - \langle T_UW, T_VF \rangle + \langle T_VW, T_UF \rangle
$$

\n(b) $\langle \mathfrak{R}_{UV}W, X \rangle = \langle (\nabla_V T)_U W, X \rangle - \langle (\nabla_U T)_V W, X \rangle$

where $\hat{\mathfrak{R}}$ is the curvature tensor of the fiber $\pi^{-1}(\pi(p))$ at p.

Proof. (These equations relate the geometry of *M* to those of the fibers $\pi^{-1}(q)$; they are clearly the Gauss and Codazzi equations of the fibers.) The proof is the same as that of a single submanifold.

Theorem 4.2 If X, Y, Z, H are horizontal vector fields and V is vertical, then

(a)
\n
$$
\langle \mathfrak{R}_{XY}Z, H \rangle = \langle \mathfrak{R}^*_{XY}Z, H \rangle - 2\langle A_XY, A_ZH \rangle + \langle A_YZ, A_XH \rangle + \langle A_ZX, A_YH \rangle
$$

\n(b)

$$
\langle \mathfrak{R}_{XY}Z, V \rangle = \langle (\nabla_Z \mathbf{A})_X Y, V \rangle + \langle \mathbf{A}_X Y, \mathbf{T}_V Z \rangle - \langle \mathbf{A}_Y Z, \mathbf{T}_V X \rangle - \langle \mathbf{A}_Z X, \mathbf{T}_V Y \rangle
$$

an history of particles of the contract of the state of the contract of the contract of the contract of the co

Proof. See O'Neill [6].

Theorem 4.3 If X and Y are horizontal vector fields, and V and W are vertical, then

(a)
$$
\langle \mathfrak{R}_{XY} Y, W \rangle = \langle (\nabla_X \mathbf{T})_V W, Y \rangle + \langle (\nabla_V \mathbf{A})_X Y, W \rangle
$$

 $-\langle \mathbf{T}_V X, \mathbf{T}_W Y \rangle + \langle \mathbf{A}_X V, \mathbf{A}_Y W \rangle$

(b)
$$
\langle \mathfrak{R}_{\nu W} X, Y \rangle = \langle (\nabla_{\nu} A)_X Y, W \rangle - \langle (\nabla_{\nu} A)_X Y, V \rangle + \langle A_X V, A_Y W \rangle
$$

 $-\langle A_X W, A_Y V \rangle - \langle T_V X, T_W Y \rangle + \langle T_W X, T_V Y \rangle$

Proof. See O'Neill [6].

In the case of sectional curvature, the proofs of these theorems become trivial. For the tangent vectors *a* and *b* (assumed to be linearly independent), we will denote by P_{ab} the tangent plane which is spanned by them.

Corollary 4.1 Let $\pi : M \to B$ be a submersion and let κ, κ and $\hat{\kappa}$ denote the sectional curvatures of *M, B* and the fibers respectively. If *x* and y are horizontal vectors at a point of M and v and w are vertical, then;

$$
(1) \ \ K\left(\mathbf{P}_{vw}\right) = \hat{\kappa}\left(P_{vw}\right) - \frac{\langle \mathbf{T}_{v}v, \mathbf{T}_{w}w \rangle - \langle \mathbf{T}_{v}w, \mathbf{T}_{v}w \rangle}{\langle v \wedge w, v \wedge w \rangle}
$$

$$
(2) \qquad \kappa(P_{xy}) = \frac{\langle (\nabla_x T)_\nu v, x \rangle + \langle A_x v, A_x v \rangle - \langle T_\nu x, T_\nu x \rangle}{\langle x, x \rangle \langle v, v \rangle}
$$

(3)
$$
\kappa(\mathbf{P}_{xy}) = \kappa_* (\mathbf{P}_{x,y_*}) - \frac{3 \langle \mathbf{A}_x y, \mathbf{A}_x y \rangle}{\langle x \wedge y, x \wedge y \rangle}
$$
, where $x_* = \pi_* (x)$.

Proof. (The first equation above is the formulation of Gauss equation for the fibers.) All of them follow from the following well-known equation;

ファイン ちょうしょう しょうしん しゅうしょう きょうしょう アイ・コント きょうきょう きょうしょう こうこうこうしょう じんしん しんしんしん しんしん しんしん しんしん しょうしん しゅうしょう しょうしょう しょうかい しゅうしょう しゅうしょう しゅうしょう しゅうしん しゅうしょう しゅうしょう しゅうしょう

$$
\kappa(\mathbf{P}_{vw}) = \frac{\langle \mathfrak{R}_{vw} v, w \rangle}{\langle v \wedge w, v \wedge w \rangle}
$$

We have obtained in Lemma 3.1, Lemma 3.2 and Lemma 3.3 the covariant derivatives of the fundamental tensors **T** and A; that is, we have expressed the tensors $(V_E I)_F$ and $(V_E A)_F$ in T and A. Now, we consider $\langle (\nabla_F T)_E G, L \rangle$.

Since it can be written two different types of vector fields, horizontal and vertical, instead of each vector fields E, F, G , and L , it follows that we can state $\langle (\nabla_{E} T)_{F} G, L \rangle$ in exactly sixteen different types; i.e., we can say the covariant derivatives ∇T of T in sixteen different type. The eight of them can be expressed by using Lemma 3.1, and the three one of others can be expressed by using Lemma 3.3 in **T** and A. But , the other five types may not be possible to write in **T** and A by using the Lemma 3.1 and Lemma 3.3. For instance, we can not state $\langle (\nabla_x \mathbf{T})_y W, Y \rangle$ in **T** and **A**. Similar claims are also valid for the fundamental tensor A. In other ways, we can not state $\langle (\nabla_{V} A)_{X} Y, W \rangle$ in **T** and **A**. However, we find a relation between $\langle (\nabla_{X} T)_{\nu} W, Y \rangle$ and $\langle (\nabla_{\nu} A)_{\nu} Y, W \rangle$, and state it in Theorem 4.4 below.

Theorem 4.4 If V and W vertical vector fields and X and Y are horizontal, then

$$
\langle (\nabla_X \mathbf{T})_{V} W, Y \rangle - \langle (\nabla_Y \mathbf{T})_{V} W, X \rangle = - \langle (\nabla_V \mathbf{A})_{X} Y, W \rangle - \langle (\nabla_W \mathbf{A})_{V} X, V \rangle
$$

Proof. From the *first Bianchi Identity* we have that

$$
\langle \mathfrak{R}_{XY} Y + \mathfrak{R}_{YY} X + \mathfrak{R}_{YY} V, W \rangle = 0
$$

Hence we can write
 $\langle \mathfrak{R}_{XY} Y, W \rangle + \langle \mathfrak{R}_{YY} X, W \rangle + \langle \mathfrak{R}_{YY} V, W \rangle = 0$...(1)

where, we use the Theorem 4.3-(a). Now we have that

$$
\langle \mathfrak{R}_{XY} Y, W \rangle = \langle (\nabla_X \mathbf{T})_V W, Y \rangle + \langle (\nabla_V \mathbf{A})_X Y, W \rangle - \langle \mathbf{T}_V X, \mathbf{T}_W Y \rangle + \langle \mathbf{A}_X V, \mathbf{A}_Y W \rangle
$$

...(2),

 $\label{eq:2d} \begin{array}{ll} \mathcal{L}_{\mathcal{A}}(\mathcal{A})=\mathcal{L}_{\mathcal{A}}(\mathcal{A})=\mathcal{L}_{\mathcal{A}}(\mathcal{A})=\mathcal{L}_{\mathcal{A}}(\mathcal{A})=\mathcal{L}_{\mathcal{A}}(\mathcal{A})=\mathcal{L}_{\mathcal{A}}(\mathcal{A})=\mathcal{L}_{\mathcal{A}}(\mathcal{A})=\mathcal{L}_{\mathcal{A}}(\mathcal{A})=\mathcal{L}_{\mathcal{A}}(\mathcal{A})=\mathcal{L}_{\mathcal{A}}(\mathcal{A})=\mathcal{L}_{\mathcal{A}}(\mathcal{A})=\mathcal{L}_{\$

and by the symmetries of curvature tensor π , we obtain

$$
\langle \mathfrak{R}_{\gamma\gamma} X, W \rangle = -\langle \mathfrak{R}_{\gamma\gamma} X, W \rangle = -\langle (\nabla_{\gamma} T)_{\gamma} W, X \rangle - \langle (\nabla_{\gamma} A)_{\gamma} X, W \rangle + \langle T_{\gamma} Y, T_{\gamma\gamma} X \rangle - \langle A_{\gamma} V, A_{\gamma} W \rangle ... (3)
$$

On the other hand, again, by using the symmetries of curvature tensor \Re , we have that

$$
\langle \mathfrak{R}_{YX} V, W \rangle = -\langle \mathfrak{R}_{XY} V, W \rangle = -\langle \mathfrak{R}_{YW} X, Y \rangle
$$
 and use the Theorem 4.3-(b)

we have

$$
\langle \mathfrak{R}_{YX} V, W \rangle = - \langle (\nabla_V \mathbf{A})_X Y, W \rangle + \langle (\nabla_W \mathbf{A})_X Y, V \rangle - \langle \mathbf{A}_X V, \mathbf{A}_Y W \rangle
$$

+ $\langle \mathbf{A}_X W, \mathbf{A}_Y V \rangle + \langle \mathbf{T}_V X, \mathbf{T}_W Y \rangle - \langle \mathbf{T}_W X, \mathbf{T}_Y Y \rangle ... (4)$

Putting **(2),(3)** and **(4)** in **(1)** the result follows.

Ğ.

F.9

References

[1] R.H. Escobales, Jr., *Riemannian submersions with totally geodesic fibers,* J. Differential Geometry **10** (1975) 253-276.

[2] K.L. Duggal and A. Bejancu, *Lightlike submanifolds of Semi-Riemannian manifolds and applications,* Kluwer Academic Publishers, 1996.

[3] A. Gray, *Pseudo-Riemannian almost product manifolds and submersions,}.* Math. Mech. **16** (1967), 715-737.

[4] S. Kobayashi and K. Nomizu, *Foundations of Differential Geomeùy,* Vol 1, Interscience, Newyork (1963).

[5] B. O'Neill, *Semi-Riemannian Geometry with Applications to Relativity,* Academic Press, 1983.

[6] B. O'Neill, *The Fundamental Equations of a Submersion,* Michigan Math. J. **13** (1966), 459-469.

H. Mete TAŞTAN Department of Mathematics Faculty of Science Istanbul University Vezneciler 34459, Istanbul TURKEY E-Mail: hakmete@istanbul.edu.tr