THE WIENER TYPE SPACES $W(B_{W,v}^{p,q}(G), L_v^r(G))$

Birsen SAĞIR A.Turan GÜRKANLI

Abstract. Let G be a locally compact abelian group $1 \le p,q,r < \infty$ and w, v, v are Beurling's weights on G. We denote by $B_{w,v}^{p,q}(G)$ the vector space $L_w^p(G) \perp L_v^q(G)$ and endowed it with the sum norm $||f||_{w,v}^{p,q} = ||f||_{p,v} + ||f||_{p,v}[8]$. Research on Wiener type spaces was initiated by N. Wiener in [9] and many authors worked on these spaces. H. Feichtinger gave a kind of generalization of the Wiener's definition in [1]. In this work we discussed Wiener type spaces $W(B_{W,v}^{p,q}(G), L_v^r(G))$ using the space $B_{w,v}^{p,q}(G)[8]$ as a local component, and $L_v^r(G)$ as a global component.

1. Introduction.

Let G be a locally compact (non-compact, non-discrete) abelian group with Haar measure dx. We denote by $C_{C}(G)$ the space of all continuous, complex-valued functions on G with compact support. The space $L^1_{loc}(G)$ consists of all measurable functions f on G such that $f\chi_{\mathcal{K}} \in L^{1}(G)$ for any compact subset $K \subset G$, where $\chi_{\mathcal{K}}$ is the characteristic function of K. It is a topological vector space with the family of seminorms $f \to || f \chi_{\kappa} ||_{L}$. A Banaeh function space (shortly BF-space) on G is a Banach space $(B, \|\cdot\|_{R})$ of measurable functions embedded into $L^{1}_{loc}(G)$, i. e. for any compact subset $K \subset G$ there exists some constant $C_K > 0$ such that $\| f \chi_K \|_1 \le C_K \| f \|_B$ for all $f \in B$. A BF-space is called solid, if $g \in B$, $f \in L^1_{loc}(G)$ and $|f(x)| \le |g(x)|$ locally almost everywhere (shortly I. a. e) implies $f \in B$ and $||f||_B \le ||g||_B$. The left translation operators L_y are given by $L_y f(x) = f(x-y)$ for $x, y \in G$. $(B, \|.\|_B)$ is called strongly translation invariant if one has $L_{y}B \subseteq B$ and $\|L_{y}f\|_{B} = \|f\|_{B}$ for all $f \in B, y \in G$. A Banach space $(B, \|\|_{B})$ is called a Banach module over a Banach algebra $(A, \|.\|_{A})$ if B is a module over A in the algebraic sense and satisfied $\|a.b\|_{B} \le \|a\|_{A} \|b\|_{B}$ for all $a \in A$, $b \in B$. A triple (B^1, B^2, B^3) of BF-space will be called a Banach convolution triple (BCT), if convolution given by

$$f^{1} * f^{2}(x) = \int_{G} f^{1}(x - y) f^{2}(y) dy$$

for $f' \in B' \mid C_U(G)$ (i=1, 2), extends to a continuous bilinear map from $B^1 \times B^2$ into B^3 . It is known that a Banach space *B* is Banach module over the Banach algebra *A* if (*A*, *B*, *B*) is a BCT [1]. The Fourier algebra A(G) is defined by $\left\{ \hat{f} \mid f \in L^1(\hat{G}) \right\}$. It is a Banach algebra with respect to pointwise multiplication and the norm $\left\| \hat{f} \right\|_A = \|f\|_1$, here \hat{f} is the Fourier transform of $f \in L^1(\hat{G})$. Throughout this work, we also will use Beurling weights, i. e. real-valued, measurable and locally bounded functions w on a locally compact abelian group G which satisfy $1 \le w(x)$, $w(x + y) \le w(x)w(y)$ for $1 \le p < \infty$, we set

$$L^p_w(G) = \Big\{ f \Big| f w \in L^p(G) \Big\}.$$

Under the norm $||f||_{p,w} = ||f.w||_p$, this is a Banach space. When p=I, $L^{t}_{w}(G)$ becomes an algebra under convolution, called Beurling algebra [7]. In this paper another $B_{wv}^{p,q}(G) = L_w^p(G) \sqcup L_v^q(G)$ with the norm important tool is the space $\|\cdot\|_{p,w}^{p,q} = \|\cdot\|_{p,w} + \|\cdot\|_{p,w}$ [8], where w, v are Beurling weights on G and $1 \le p, q < \infty$. The main tool is the Wiener type spaces in the sense [1]. The definition is the following: Let B be a BF-space. Assume that there exists a homogeneous Banach algebra (A, [.],]), continuously embedded into $(C_h(G), [.],])$, and (B, [.],]) is continuously embedded into the topological dual space $A'_{C}(G) = (A(G) \mid C_{C}(G))'$, where $A'_{C}(G)$ is equipped with its weak topology $\sigma(A'_{C}(G), A_{C}(G))$. Here $A_{C}(G) = A(G) \perp C_{C}(G)$ is given inductive limit topology of its subspaces $(A_{\kappa}(G), []]_{1})$, where $K \subset G$ compact, $A_{\kappa}(G) = A(G) + C_{\kappa}(G)$. Also B is Banach module over A(G) with respect to pointwise multiplication. We define B_{loc} to be the space of all elements f of $A'_{\mathcal{C}}(G)$ such that $hf \in B$ for all $h \in A_{\mathcal{C}}(G)$. This is a locally convex vector space together with the topology defined by the seminorm $f \to \|hf\|_{B}, h \in A_{C}(G)$. Fix an open, relatively compact set $\Omega \subset G$ and for $f \in B_{loc}$ we set $F_f(x) = \|f\|_{B(x+\Omega)}$, with

 $\|f\|_{B(x+\Omega)} = \inf \{\|g\|_{B} | g \in B, hf = hg \text{ for all } h \in A_{C}(G) \text{ with } \sup ph \subset x + \Omega \}.$

If now C is a solid, translation invariant BF-space on G, the Wiener type space W(B,C) with local component B and global component C is then defined by

$$W(B,C) = \left\{ f \in B_{hoc} \middle| F_{t} \in C \right\}.$$

The natural norm on W(B, C) is given by

$$\left\|f\right\|_{W(B,C)} = \left\|F_f\right\|_C \quad [1].$$

2. The Wiener Type Spaces $W(B_{u,v}^{p,q}(G), L_v^r(G))$

We introduce the Banach spaces

$$A^{\omega}(G) = F\left(L^{\mathsf{I}}_{\omega}(\hat{G})\right) = \left\{\hat{f} \mid f \in L^{\mathsf{I}}_{\omega}(\hat{G})\right\}$$

the norm $\|\hat{f}\|_{\omega} = \|f\|_{\omega}$ where ω is an arbitrary weight function on \hat{G} , and F is the classical Fourier transform. With this, $A^{\omega}(G)$ is a Banach algebra under pointwise multiplication [7]. We set $A_{C}^{\omega}(G) = A^{\omega}(G) I C_{U}(G)$, equipped with the inductive limit topology τ_{ω} of the subspaces $A_{k}^{\omega}(G) = A^{\omega}(G) I C_{k}(G)$, $K \subset G$ compact. equipped with their $\|f\|_{\omega}$ -norms and $A_{C}^{\omega}(G)'$ is the topological dual of $A_{C}^{\omega}(G)$ with the weak*-topology.

Lemma 2. 1. $B_{w,v}^{p,q}(G)$ is continuously embedded into $A'_{c'}(G)$ with its weak*-topology.

Proof. It is clear that $B_{\mu,\nu}^{p,q}(G)$ is continuously embedded into $L^{p}(G)$. It is also known that $A'_{C}(G) = \Omega(G)$, the space of quasimeasures on *G*, and that $L^{p}(G)$ is continuously embedded into $\Omega(G)$ (with its weak topology as the dual D(G) [6]. This proves our proposition.

Theorem 2.2. Let w, v be weights on G and $1 \le p, q < \infty$. If the weight function ω on

$$\hat{G}$$
 satisfies Beurling Domar condition (shortly (BD) i. e $\sum \frac{\log w(t^n)}{n^2} < \infty, t \in \hat{G}$).
then $B_{w,v}^{p,q}(G)$ is continuously embedded into $\sigma \in (A_C^{\omega}(G)', A_C^{\omega}(G))$.

Proof. Since $B_{w,v}^{p,q}(G)$ is continuously embedded into $\sigma \in (A'_C(G), A_C(G))$ by the Lemma 2. L, then if one uses the above embedding and Corollary 1. 3 in [5], easily proves the Theorem.

We assume henceforth that the weight function ω on \hat{G} satisfies (B. D). Therefore $A^{\omega}(G)$ satisfies all of the properties required for the construction of Wiener type spaces in the sense of Feichtinger [1]: It is clear that $A^{\omega}(G)$ is continuously embedded into $C_b(G)$. Moreover, $A^{\omega}(G)$ is a regular Banach algebra under pointwisc multiplication (Reiter, [7]) and also is homogeneous Banach space [4].

Secondly, $B_{w,v}^{p,q}(G)$ is a Banach module over $A^{m}(G)$ under pointwisc multiplication [8] and we proved that $B_{w,v}^{p,q}(G)$ is continuously embedded into $\sigma(A_{v}^{m}(G)', A_{c}^{m}(G))$ in Theorem 2. 2. Hence, Feichtinger's general hypotheses arc satisfied. That means the Wiener type spaces $W(B_{W,v}^{p,q}(G), L_{v}^{r}(G))$ arc well defined: Given any open subset Ω of G with compact closure and $f \in (B_{w,v}^{p,q}(G))_{loc}$, we set

$$F_f(z) = \left\| f \right| z + \Omega \right\|_{W,V}^{p,q} \qquad z \in G .$$

The Wiener type space $W(B_{W,v}^{p,q}(G), L_v^r(G))$ with local component $B_{w,v}^{p,q}(G)$ and global component $L_v^r(G)$ is then defined by

$$W(B_{w,v}^{p,q}(G), L_v^r(G)) = \Big\{ f \in \Big(B_{w,v}^{p,q}(G)\Big)_{loc} \Big| F_f \in L_v^r(G) \Big\}.$$

The natural norm of $W(B^{p,q}_{W,\nu}(G), L^r_{\nu}(G))$ is given by

$$\left\| f \right\| W \Big(B^{p,q}_{w,v}(G), L^r_v(G) \Big) = \left\| F_f \right\|_{r,v}$$

We now proceed to the investigation of some basic properties of Wiener type spaces $W(B_{W,v}^{p,q}(G), L_v^r(G))$ in the sense [1].

Theorem 2. 3. (i) The Wiener type space $W(B_{W,v}^{p,q}(G), L_v^r(G))$ is a Banach space under the norm

$$\left\|f\right\|_{W\left(B^{p,q}_{w,v}(G),J^{r}_{w}(G)\right)}\right\| = \left\|F_{f}\right\|_{r,v}$$

where $f \in W(B^{p,q}_{W,e}(G), L^{r}_{v}(G))$. It is also continuously embedded into $(B^{p,q}_{w,e}(G))_{loc}$.

(ii) The set $A_0 = \{ f \in B^{p,q}_{w,v}(G) | \sup pf \text{ is compact} \}$ is continuously embedded into $W(B^{p,q}_{w,v}(G), L^{r}_{v}(G))$.

(iii) $W(B_{0,v}^{p,q}(G), L_v^r(G))$ is left (right) invariant,

 $\left\| L_{x} \right\| \leq \left\| L_{x} \right\|_{u,v}^{r,q} \left\| L_{x} \right\|_{r,v}$

where $\|\cdot\|_{v,v} \|\cdot\|_{w,v}^{p,q}$ and $\|\cdot\|_{r,v}$ are operator norms on $W(B_{W,v}^{p,q}(G), L_v^r(G))$, $B_{w,v}^{p,q}(G)$ and $L_v^r(G)$ respectively.

(iv) The translation is continuous in the Wiener type spaces $W(B_{W,v}^{p,q}(G), L_v^r(G))$.

(v) $W(B_{W,v}^{p,q}(G), L'_v(G))$ is a Banach module over $W(A(G), L^{\infty}(G))$ with respect to the pointwise multiplication.

Proof. By Proposition 2. 3 in [8] the space $B_{\mu,\nu}^{p,q}(G)$ is translation invariant and translation is continuous in this space. Then if one uses Theorem 1 in [1], the proof of this theorem is completed.

Proposition 2. 4. Let w and v be weight function on G satisfying $v \le w$ and $1 \le p, q < \infty$. Then $W(B^{p,q}_{W,v}(G), f^r_v(G))$ is a Banach module over $W(B^{1,q}_{W,v}(G), L^r_v(G))$ with respect to convolution.

Proof. It is easy to show that every locally compact abelian group is a *IN* group. Moreover by Proposition 2. 13 (b) in [8] the space $B_{w,v}^{p,q}(G)$ is a Banach module $B_{wx}^{1,q}(G)$ with respect to convolution. It is also known that $L_w^p(G)$ is a Banach $L^1_{\omega}(G)$ with module over respect to convolution [4]. Then $(B^{1,q}_{w,v}(G), B^{p,q}_{w,v}(G), B^{p,q}_{w,v}(G))$ and $(L^1_w(G), L^p_w(G), L^p_w(G))$ are two Banach convolution on G. If one uses Theorem 3 in shows triples [1] that $\left(W(B^{1,q}_{w,v}(G), L^{1}_{w}(G)), W(B^{p,q}_{w,v}(G), L^{p}_{w}(G)), W(B^{p,q}_{w,v}(G), L^{p}_{w}(G)) \right)$ а Banach convolution triples on G. Then $W(B_{B',v}^{p,q}(G), L_w^p(G))$ is a Banach module over $W(B_{W,y}^{1,q}(G), L_w^1(G))$ with respect to convolution.

Theorem 2.5. $W(B_{W,y}^{p,q}(G), L'_{y}(G))$ is a BF-space on G.

Proof. By the Theorem 2. 3. (i), $W(B_{\emptyset',v}^{p,q}(G), L_v^r(G))$ is continuously embedded into $(B_{w,v}^{p,q}(G))_{loc}$. That means given any $h \in A_c^{\infty}(G)$ (Thus a seminorm $P_h(f) = ||h, f||_{w,v}^{p,q}$ on $(B_{w,v}^{p,q}(G))_{loc}$) there exists a constant $D_h > 0$ such that

$$\|h, f\|_{w,v}^{p,q} \le D_h \|f| W(B_{w,v}^{p,q}(G), L_v^r(G))\|$$

for all $f \in W(B^{p,q}_{W,\varepsilon}(G), L^{r}_{\varepsilon}(G))$. Hence one can write

(1)
$$\|h.f\|_{p} \leq D_{h} \|f| W \Big(B_{w,v}^{p,q}(G), L_{v}^{r}(G) \Big) .$$

Take any compact subset $K \subset G$. Since $A^{\omega}(G)$ is a regular Banach algebra with respect to pointwise multiplication, then one may choice a function

 $h \in A_c^{(n)}(G) = A^{(n)}(G) \mid C_C(G)$ satisfying $0 \le h < 1$ and h(x) = l for all $x \in K$. We let $Supph = K_0$. Then $\chi_K(x) \le h(x)$, hence $\chi_K(x) |f(x)| \le h(x) |f(x)|$ for all $x \in G$. Since L^p is continuously embedded into L_{loc}^1 , then there exists $D_{K_0} > 0$ such that

(2)
$$\int_{\mathcal{K}_{n}} |h(x)f(x)| dx \leq D_{\mathcal{K}_{n}} \|hf\|_{p}.$$

Also one has

(3)
$$\iint_{K} |f(x)| dx \leq \iint_{K_{\alpha}} |f(x)h(x)| dx.$$

The proof is completed combining the formulas (1), (2) and (3).

Corollary 2. 6. Let w, v be weights on G, $v \le w$ and $x \in G$. Then the map $x \to ||L_x||$ is locally bounded, where ||||| denotes the operator norm on $W(B_{W,v}^{p,q}(G), L_v^r(G))$. **Proof.** By the Theorem 2. 3. (iii), one writes

$$\left\|L_{x}\right\| \leq \left\|L_{x}\right\|_{w,v}^{p,q} \left\|L_{x}\right\|_{r,v}$$

where $\| \cdot \|_{v,v}^{p,q}$ and $\| \cdot \|_{r,v}^{p,q}$ are operator norms on $W(B^{p,q}_{W,v}(G), L^{r}_{v}(G)), B^{p,q}_{w,v}(G)$ and $L^{r}_{v}(G)$ respectively. It is also known that $\| L_{x} \|_{r,v}^{p,q} \leq v(x)$ [4] and $\| L_{x} \|_{w,v}^{p,q} \leq c.w(x)$ [8]. Then we have

$$\|L_x\| \le c.w(x)v(x)$$

for all $x \in G$. Since w and v are weight functions, then the function w.v is locally bounded. Hence $x \to \|L_x\|$ is also locally bounded.

Proposition 2. 7. The Wiener type space $W(B_{w,v}^{p,q}(G), L_v^r(G))$ is a Banach convolution module (left and right because G is an abelian group) over some Beurling algebra $L_{w_0}^1(G)$.

Proof. We proved in Theorem 2.5 that $W(B_{w,v}^{p,q}(G), L_v^r(G))$ is a BF-space. Thus $W(B_{w,v}^{p,q}(G), L_v^r(G))$ is continuously embedded into $L_{loc}^1(G)$. By Theorem 2. 3., this space is left invariant and translation operator in $W(B_{w,v}^{p,q}(G), L_v^r(G))$ is continuous. Now if one uses Lemma 1.5 in [2] proves that $W(B_{w,v}^{p,q}(G), L_v^r(G))$ is a Banach module over $L_{w_0}^1(G)$, where

$$w_0(x) = \max(1, ||L_x||).$$

Corollary 2.8. $W(B_{w,v}^{p,q}(G), L_v^r(G))$ is a left (right) Banach module over $L_{v_0}^t(G)$ if $v_0(x)$ is a weight satisfying $v_0(x) > w_0(x)$ for all $x \in G$, where $w_0(x)$ is defined as in Proposition 2.7.

Now we will begin to discuss the inclusions between the Wiener type spaces $W\left(B_{w,v}^{p,q}(G), L_{v}^{r}(G)\right)$.

Given a weighted space $L^p_{w}(G)$ the associated weighted sequence space is denoted by λ^r_{w} and defined

$$\lambda'_w = \left\{ (a_i)_{i \in I} \in \lambda^r \, \middle| \, (a_i w(i))_{i \in I} \in \lambda^r \right\},\$$

where the discrete weight w given by $w(i) = w(x_i)$ for $i \in L$ It is known that λ'_w is a Banach space with respect to the norm

$$\left\| z \right\|_{i,\mathbf{u}} = \left(\sum_{i \in I} \left| a_i w(i) \right|^r \right)^{\frac{1}{r}}$$

where $z = (a_i)_{i \in I}$.

It is easy to prove the following two lemmas:

Lemma 2.9. If $r_1 \leq r_2$ then $\lambda_w^{r_1} \subset \lambda_w^{r_2}$.

Lemma 2.10. Let v_1, v_2 be weights on *G*, and $1 \le r_1, r_2 < \infty$. If $v_1 < v_2$ and $r_2 \le r_1$ then $\lambda_{v_1}^{r_2} \subset \lambda_{v_1}^{r_1}$.

Any given solid BF-space Y may be quite naturally associated with a corresponding sequence space $Y_d(x)$ (sometimes called solid BK-space).

Given a discrete family $x = (x_i)_{i \in I}$ in *G* and a solid translation invariant BF-space $(Y, \| \cdot \|_{i})$ we define the associate discrete space $Y_d(x)$ as

$$\left\{ \Lambda \big| \Lambda = (\lambda_i)_{i \in I} \text{ with } \sum_{i \in I} \big| \lambda_i \big| \chi_{x, w} \in Y \right\},\$$

with natural norm

$$\|\lambda\|_{\gamma_{\alpha}} = \sum_{i \in I} |\lambda_i| \|\chi_{x,w}\|_{\gamma} \quad [3].$$

Using this definition, we write

(4)
$$\left(L^{r_1}(G) \vdash L^{r_2}(G)\right)_d = \left\{\lambda | \lambda = (\lambda_r), \sum_{i \in I} |\lambda_i| \chi_{x,w} \in L^{r_1}(G) \vdash L^{r_2}(G)\right\}.$$

If we use (4) and Lemma 2.9, easily prove the following two lemmas: Lemma 2.11. If $r_2 < r_1$ then $(L^{r_1}(G) \perp L^{r_2}(G))_d = \lambda^{r_2}$.

Corollary 2.12. If $r_2 < r_1$ and $v_1 < v_2$ then

$$\left(L_{\nu_1}^{\prime_1}(G) \mid \ L_{\nu_2}^{\prime_2}(G)\right)_d = \lambda_{\nu_2}^{\prime_2} \,.$$

Theorem 2.13. Let u_1 and u_2 be the weight functions in construction of Wiener type spaces $W(B_{w_1,v_1}^{p,q}(G), L_{v_1}^{r_1}(G))$ and $W(B_{w_2,v_2}^{p,q}(G), L_{v_2}^{r_2}(G))$ respectively. Also assume that $w_1, w_2, v_1, v_2, v_1, v_2$ weights on G and $1 \le p, q, r_1, r_2 < \infty$. If $u_1 \approx u_2$ and $B_{w_1,v_2}^{p,q}(G) \subset B_{w_1,v_1}^{p,q}(G)$

then $\mathcal{W}\left(B_{w_1,v_1}^{p,q}(G), L_{v_2}^{r_1}(G)\right)$ is continuously embedded into $\mathcal{W}\left(B_{w_1,v_1}^{p,q}(G), L_{v_1}^{q}(G)\right)$ if and only if $r_2 \leq r_1$ and $v_1 < v_2$.

Proof. Since $B_{w_1,v_2}^{p,q}(G) \subset B_{w_1,v_1}^{p,q}(G)$, then by Proposition 2.9. in [8] there exists a constant $c > \theta$ such that

(5)
$$\|f\|_{w_1,v_1}^{p,q} \le c.\|f\|_{w_2,v_2}^{p,q}$$

for all $f \in B_{w_2,v_2}^{p,q}(G)$. Also since $u_1 \approx u_2$ then $A_c^{u_1}(G) = A_c^{u_2}(G)$ and $(A_c^{u_1}(G))' = (A_c^{u_2}(G))'$ by Lemma 1.1 in [5]. Hence a simple calculation shows that $\left(B_{w_2,v_2}^{p,q}(G)\right)_{loc}$ is continuously embedded into $\left(B_{w_1,v_1}^{p,q}(G)\right)_{loc}$.

Now using the definition of Wiener type space and (5), $W\left(B_{w_2,v_2}^{p,q}(G), L_{v_2}^{r_2}(G)\right)$ is continuously embedded into $W\left(B_{w_1,v_1}^{p,q}(G), L_{v_2}^{r_2}(G)\right)$. Also because the Proposition 3.7 in [3], $W\left(B_{w_1,v_1}^{p,q}(G), L_{v_2}^{r_2}(G)\right)$ is continuously embedded into $W\left(B_{w_1,v_1}^{p,q}(G), L_{v_1}^{r_1}(G)\right)$ if and only if

6)
$$\left(L_{\nu_2}^{\nu_2}(G)\right)_d \subset \left(L_{\nu_1}^{\nu_1}(G)\right)_d,$$

where $(L_{v_2}^{r_2}(G))_d$ and $(L_{v_1}^{r_1}(G))_d$ are the discretes of the spaces $L_{v_2}^{r_2}(G)$ and $L_{v_1}^{r_1}(G)$ respectively. If we assume (5) then by Lemma 2.10 and (6), we have $r_2 \le r_1$ and $v_1 < v_2$. Conversely if $r_2 \le r_1$ and $v_1 < v_2$ then $\lambda_{v_2}^{r_2} \subset \lambda_{v_1}^{r_1}$. This completes the proof of this theorem.

It is known that if $w_1 < w_2, v_1 < v_2$, then $B_{w_2,v_2}^{p,q}(G) \subset B_{w_1,v_1}^{p,q}(G)$, [8]. If one uses Theorem 2.13 easily proves the Corollary.

Corollary 2.14. If $u_1 \approx u_2, w_1 < w_2, v_1 < v_2$ then $W\left(B_{w_2,v_2}^{p,q}(G), L_{v_2}^{r_2}(G)\right)$ continuously embedded into $W\left(B_{w_1,v_1}^{p,q}(G), L_{v_1}^{r_1}(G)\right)$ if and only if $v_1 < v_2, v_2 \le v_1$.

Corollary 2.15. If
$$u_1 \approx u_2, w_1 \approx w_2, v_1 \approx v_2, v_1 \approx v_2$$
 and $r_1 = r_2$, ther
 $W\left(B_{w_2,v_2}^{p,q}(G), L_{v_2}^{r_2}(G)\right) = W\left(B_{w_1,v_1}^{p,q}(G), L_{v_1}^{r_1}(G)\right).$

Proposition 2.16. If $r_2 \le r_1$ and $v_1 < v_2$ then

l

í

$$W\Big(B_{w,v}^{p,q}(G), B_{v_1,v_2}^{r_1,v_2}(G)\Big) = W\Big(B_{w,v}^{p,q}(G), L_{v_2}^{r_2}(G)\Big).$$

Proof. Since $r_2 \le r_1$ and $v_1 < v_2$ then by Corollary 2.12 we have $\left(L_{v_1}^{r_1}(G) \mid L_{v_2}^{r_2}(G)\right)_d = \lambda_{v_2}^{r_2}$. Also by Lemma 3.5 (e) in [3] we write $\left(L_{v_2}^{r_2}(G)\right)_d = \lambda_{v_2}^{r_2}$. Hence we obtain $\left(L_{v_1}^{r_1}(G) \mid L_{v_2}^{r_2}(G)\right)_d = \left(L_{v_2}^{r_2}(G)\right)_d$. Consequently if we use the Proposition 3.7 in [3] we have

$$W\Big(B^{p,q}_{w,v}(G), B^{p,p_2}_{v_1,v_2}(G)\Big) = W\Big(B^{p,q}_{w,v}(G), L^{p_2}_{v_2}(G)\Big).$$

Theorem 2.17. If $v_1 < v_2, v_3 < v_4, v_2 < v_4, r_2 \le r_1, r_4 \le r_3, r_4 \le r_2$ and $B_{w_2,v_2}^{p,q}(G) \subset B_{w_1,v_1}^{p,q}(G)$ then $W\left(B_{w_2,v_2}^{p,q}(G), B_{v_3,v_4}^{r_3,r_4}(G)\right)$ is continuously embedded into $W\left(B_{w_1,v_1}^{p,q}(G), B_{v_1,v_2}^{r_1,r_2}(G)\right)$,

Proof. Using the proof Theorem 2.1, $W\left(B_{w_2,v_2}^{p,q}(G), L_{v_2}^{r_2}(G)\right)$ is continuously embedded into $W^{\dagger}B_{w_1,v_1}^{p,+}(G), L_{v_2}^{r_2}(G)$). By Proposition 2.16 we write

(7)
$$W B_{w_1,v_1}^{p,q}(G), L_{v_2}^{r_2}(G) = W \Big(B_{w_1,v_1}^{p,q}(G), B_{v_1,v_2}^{r_1,r_2}(G) \Big).$$

Hence from the semila (7), $W(B_{w_2,v_2}^{p,q}(G), L_{v_2}^{r_2}(G))$ is continuously embedded into $W(B_{w_1,v_1}^{p,q}(G), B_{v_1}^{r_1}, G))$. Since $r_4 \leq r_3$ and $v_3 < v_4$, then because the Corollary 2.12 we have

(8)
$$\left(L_{\nu_3}^{\nu_3}(G) \mid L_{\nu_4}^{\nu_4}(G)\right)_d = \lambda_{\nu_4}^{\nu_4}$$

Also since $r_4 \le r_2$ and $v_2 < v_4$ then $\lambda_{v_4}^{r_4} \subset \lambda_{v_2}^{r_2}$ by Lemma 2.10. If one uses the formulas (8) and the quality $\left(L_{v_2}^{r_2}(G)\right)_{cl} = \lambda_{v_2}^{r_2}$ obtains that

$$\left(B_{\frac{r_1}{r_1},v_1}(G)\right)_d = \left(L_{v_3}^{r_1}(G) \mid L_{v_1}^{r_4}(G)\right)_d \subset \left(L_{v_2}^{r_2}(G)\right)_d.$$

Also by Proposition 3.7 in [3]. $W(B_{w_2,v_2}^{p,q}(G), B_{v_3,v_4}^{r_3,v_4}(G))$ is continuously embedded into $W(B_{w_2,v_2}^{p,q}(G), L_{v_2}^{r_2}(G))$. Therefore $W(B_{w_2,v_2}^{p,q}(G), B_{v_3,v_4}^{r_3,v_4}(G))$ is continuously embedded into $W(B_{w_1,v_1}^{p,q}(G), B_{v_1,v_2}^{r_1,r_2}(G))$.

Corollary 2.18. If $w_1 < w_2, v_1 < v_2, v_1 < v_2, v_3 < v_4, v_2 < v_4, r_2 \le r_1, r_4 \le r_3$ and $r_4 \le r_2$ then $W\left(B_{w_2,v_2}^{p,q}(G), B_{v_3,v_4}^{r_3,r_4}(G)\right)$ is continuously embedded into $W\left(B_{w_3,v_4}^{p,q}(G), L_{v_1,v_2}^{r_1,r_2}(G)\right)$.

Proof. Since $w_1 < w_2, v_1 < v_2$ by Corollary 2.10 in [8], we write $B_{w_2,v_2}^{p,q}(G) \subset B_{w_1,v_1}^{p,q}(G)$. Also by Theorem 2.17, $W\left(B_{w_2,v_2}^{p,q}(G), B_{v_3,v_4}^{r_3,r_4}(G)\right)$ is continuously embedded into $W\left(B_{w_1,v_1}^{p,q}(G), B_{v_1,v_2}^{r_1,r_2}(G)\right)$.

If one uses Corollary 2.19, easily proves the following Corollary. **Corollary 2.19.** If $w_1 \approx w_2, v_1 \approx v_2, v_1 \approx v_2, v_3 \approx v_4, v_2 \approx v_4$ and $r_1 = r_2 = r_3 = r_4$ then

$$W\left(B_{w_{2},v_{2}}^{p,q}(G),B_{v_{3},v_{4}}^{r_{3},r_{4}}(G)\right)=W\left(B_{w_{1},v_{1}}^{p,q}(G),B_{v_{1},v_{2}}^{r_{1},r_{2}}(G)\right).$$

The proof of the following Proposition is easy using the proof technique of Theorem 2.14.

Proposition 2.20. If $w_1 < v_1, w_2 < v_2, v_2 < v_1, q_1 \le p_1, q_2 \le p_2, q_1 \le q_2$ and $L_{v_1}^r(G) \subset L_{v_2}^r(G)$ then $W(L_{v_1}^r(G), B_{w_1, v_1}^{p_1, q_1}(G))$ is continuously embedded into $W(L_{v_2}^r(G), B_{w_2, v_2}^{p_2, q_2}(G))$. References

[1] H. G. Feichtinger. Banach convolution algebras of Wiener type. Colloqua Mathematica Socictatis Janos Balyai., 35 Functions, series, operators, Budapest (Hungary), 1980.

[2] H. G. Feichtinger. On a class of convolution algebras of functions, Ann. Inst. Fourier, Grenoble 27, 3 (1977) 135-162.

[2] H. G. Feichtinger. K. H. Grochenic. Banach spaces related to integrable group representations and their atomic decompositions 1., Journal of functional analysis Vol. 86, No. 2 (1989).

[4] R. H. Fischer, A. T. Gürkanh, T. S. Liu. On a Family of Weighted spaces. Mathematica Slovaca, Vol. 46, No. 1, (1996) 71-82.

[5] R. H. Fischer, A. T. Gürkanh, T. S. Liu. On a family of Wiener type spaces, Internat. J. Math. Sci. Vol. 19 No. 1 (1996) 57-66.

[6] R. Larsen, Introduction to the theory of multipliers. Springer Verlag, 1971.

[7] 11. Ricter. Classical Harmonic Analysis and locally compact groups., Oxford University Press, Oxford, (1968).

[8] B. Sağır, A. T. Gürkanh. The spaces $B_{w,v}^{p,q}(G)$ and Some Properties. Journal of

the Faculty of Science Ege University, Series A, Vol. 17, No. 2, 1994.

[9] N. Wiener. Tauberian theorems, Ann. of Math. 33 (1932) 1-10.

Ondokuz Mayıs Üniversitesi Fen-Edebiyat Fakültesi Matematik Bölümü 55139 Kurupelit / SAMSUN F-mail: <u>gurkanli@</u>SAMSUN.omu.edu.tr