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T H E M A P P I N G O F T H E D U A L P R O J E C T I V E P L A N E I N T O T H E T H R E E -

D I M E N S I O N A L S P A C E O F L I N E S 

Fusun URAS 

Abstract : In this work every point of the projective plane P2 (whose homogeneous 
coordinates are dual numbers) is corresponded with a single oriented straight line of the space 
of straight lines. As examples, the figures corresponding to classical Desargues' axiom and 
Pappos' Theorem are determined. In addition, the figure corresponding Pappos figure is plotted 
axonometricaily, 

1. In t roduct ion 

1.1. First, we wish to give a brief explanation about the dual quantities which find 
successful application fields in geometry [1 ] : 

Let the symbols (X be defined as 

a = a + E a', (s2 - 0) (1.1) 

where a.a are real numbers, £ is a symbol whose square is zero {E1 = 0 ) . Let us define 

the sum and the multiplication of the symbols as it is done between the two binomials of real 
numbers. Then it can be easily shown that the set of such symbols Of form a commutative ring 
with zero-divisor and unit element. The ring so-defined is called the ring of dual numbers. In 

(1.1). tt is called the real part of a and a is the dual part. If a - 0, (X is called pure dual, if 

a = 0 , a is real. The pure dual numbers 8 h are the zero-divisors of the ring and the 
division by these numbers is not defined. 

If (0 — u + £ // is a dual angle, the cosine and the sine are defined as 

, (0" (Ol o)s (0* , / 4 n 

Cosft> = l - - — + - A. , Sin (0 = CO — — - + A (1 .2) 
2! 4! 3! 5! 

Therefore, we have 

Cos to - Cos (it + £ it*) = (1 + — - A )-£u*(it- — A A ) = 
2! 4! 3! 5! 

- C o s 11 -£ 11 Sin 11 (1-3) 

Now we consider a straight line in £3, passing through the points „f,J>. The six coordinates 

a\ , ak of the vectors 

£ = p ( P - . ? ) . S*=P(SA?) , ( p * 0 ) (1.4) 

which satisfy the condition 



SE' = o d .4 ' ) 

are called homogeneous Pliicker coordinates of (he straight line. If is easy to see that for 

p can be chosen so that S1 = 1 . 

If p is assumed to be chosen so that Fr = 1 , the unit vector ¥i determining the direction and 

the sense of the straight line and the vector Ft which is the moment vector of If with respect 

to the origin, determine a straight line completely. The condition of a point )t to be on the 

straight line 

The footpoint of the perpendicular from the origin to the straight line has the position 
vector 

£ = £A£ ' (1.6) 

Let us now consider the dual vector A whose coordinates are ak ~ak +£ttk . we have 

=i> ( i .7 ) 

If we use (1.4') and E1 = 1 , and therefore, A is a unit vector. Thus we obtain a mapping of 
— V 

the directed straight lines of £ 3 to the dual points of the unit sphere. If A and 

are two unit dual vectors, we have = Cos( i? , />) = Cos u in the 

scalar product 

li=8-Z+B{B.£+l£) (i.8) 
On the other hand, the dual part, i.e. the coefficient of 8 satisfies the relation 

where / i , K are the foot points of the common perpendicular on the lines ) and 

) respectively. 

If the length of the common perpendicular is 5 , we have 

| £ . £ - + £ . £ ' | : = , 5 s i n W , {fr=fr=\) 

Now it is seen that u is equal to 8 if HK)>0 is equal to -<5 if 

ill 
HK) < 0 . That is, U is the directed length of the common perpendicular. Therefore 

the dual part is —s u Sin u which gives 
H = Cos u — £ u* Sin u — Cos<o s ( O ) = U + E U ' ) (1.9) 

Now we observe that the dual angle between the straight lines A, ¡3 is a combination of the 

ordinary angle u and the directed shortest distance u . On the other hand, if the dual 

anqle between A, ¡3 is co , the anqle between — A and S (or A and — B) is 



ÏÏ ~(0 ~ (71 ~lf) + C ( - / / * ) 

As the last properties, we cite the following : If the R (a), D(a) are the real and dual parts 

of the dual number a , we see from (1.9) that the condition of the lines / J , i / t o be 
perpendicular is 

R ( A - } i ) = Q (1.10) 

the condition for the lines to be concurrent is 

D(/i li) = 0, R(A$)2 * 1 (1.11) 

the condition for the lines to be perpendicularly concurrent is 

/Î-Jï = 0, (R{A'-$)2 *1 ) (1.11') 

the condition for the lines A^ B to be parallel is 

RUi-ti) = ±\, (wherenecessarily D - 0) (1.12) 

Let us note that the orthogonal transformations of the unit sphere A2 = 1 corresponds to a 

Euclidean motion in the space of lines E 3 . 

1.2. Now let us note some particular properties of the projective plane [ 2 ]. 

Between the points X° of P2 and ordered triple of numbers ( , . ¥ 2 , x 3 ) different from (0,0,0) 

a one-one correspondence can be established through an / , . / , K coordinate triangle if a 

common proportionality factor is neglected. The triple (x^. x2, A ' 3 ) is called the homogeneous 

coordinates of the point X° . 

The equation of a line A'L) of P2 , that is the condition that a point ( x , , x2, x3 ) to 

be on the line A'0 is 

a[x] +a'2x2 +£vi-v, =0 (1.13) 

where the triple (a\ui\ ) ̂  (0,0,0) is also determined uniquely of a common 

proportionality factor is disregarded . The ordered triple (a\, a\, a\) so determined is called 

the homogeneous coordinates of the straight line A'° . Therefore (1.13) is the equation of A'0 

if (a[,a'2 ) is known and is the equation of the point X ° i f ( X | , x , , i , ) is known. 

Summarily, (1.13) gives either the points on A'0 , or the lines passing through X? 

2 .1 . Let the real points of P2 be denoted as A°*B°,... and the real lines 

as A,0,B'0X"° The homogeneous coordinates (x1,x2-,X3) of a point X°, can be 

interpreted as the Cartesian coordinates of the direction vector of a straight line in E 3 ; 

since a direction in E 3 is also determined by an ordered-triple of numbers different from 
(0,0,0) if R common proportionality factor is disregarded. Similarly the homogeneous 



coordinates (a[,a\*a\) of the real line A'0 defines a direction vector h' in A 3 

Therefore the equation (1.13) can be rewritten in the form 

We called the direction vector i / ' and x as the coordinate vectors of A'° and . V 0 - On 

the other hand, the coordinate vector c' of the real line A° B° = C"° will be in the form 

since it satisfies the properties = 0 due to (2-1). Similarly, the coordinate 

vector of the real point A'0 B'° = C '° will be 

Naturally, the points on the straight line C" and the straight line passing through ( ' can be 
respectively given by the following equations : 

2.2. Now we will consider the dual points and dual lines of P2 whose coordinates are dual 
numbers. But as (0,0,0) was neglected above, in the dual case, also some restrictions need to 
be necessarily made. The first restriction is the necessity of disregarding such triples which are 

purely dual as ( E a] , E a2 , E a , ). This must be so because according to (2.2), (2.2'), a 

pair of purely dual points cannot define a line, neither a pair of purely dual lines is able to define 
a point. In addition, straight lines determined by a purely dual point and a dual (or real) point 
will be purely dual. According to (2.2), two purely dual such lines passing through A should 
determine A , but those two lines will surely determine no point at all. The same argument 
can also be repeated for the purely dual straight line A'. Hence, together with the real ones, 

the purely dual lines and points also must be disregarded. Hence the point A and the line A' 

of Pz which are neither real nor purely dual have the coordinate vectors 

4 , A ; = K * P ' , ( f * 0 . £ * 0 ; . P * 0 , . P ' * 0 ) (2.4) 

(2.3) 

Let us normalize the vectors Ay, A\ by respectively. We use the notation 

But the normalized vectors again be denoted as 

normalized coordinate vectors are obtained as 

(2.4') 

From now on, we will use the normalized coordinate vectors (2.4') as the coordinate vectors of 

dual points and lines of P2 . 

The points (or lines) A, B of P 2 , which have the normalized vector denoted by 



A ; . {- . . i>. ir . r . p-
both having the same real part, will be called dependent points (or lines). Two dependent 
points can determine a purely dual line and two dependent lines can determine a purely dual 
point, both of which had been necessarily disregarded above. Hence, as a second restriction, 
the dependent points(or lines) will not be considered as different from each other. 

Let us correspond the dual unit vectors 

J r = . P V c £ ' V . ? > £ + # V ( £ = J K l ) ( 2 . 5 ) 

to dual point A and the dual line A' . For this correspondence to be acceptable, the unit 
vector corresponding to A(A') and to aA(aA') must be the same, in fact, for 

a — a + e a we have 

a A , =i$+c(c$' +£ / \P) , aA\ = cS' + c ( a P ' * +</ .? ' ) 
and 

<« A,)' = f* + , + ^ ) . <„ 4) = ,P'° + , < | l + ± - % > ) 

The vectors to be corresponded to these normalized vectors are obviously the vectors A/A' 

given in (2.5), according to the correspondence rule (2.5). Thus, to the dual points and dual 

lines of P2, there corresponds directed lines which are the only elements which form E 3 . But, 
the correspondence should be restricted to the elements which are not excluded by the above 
mentioned two exceptional cases. Hence, to the all results and their dual correspondence 

involving the dual lines and dual points in P2 , the same result corresponds in E 3 . For 

instance, both the dual points of a dual line of P2 and the dual lines passing through a dual 

poinr of P2 have the same corresponding figure in E 3 . On the other hand, both the 

dependent lines and the dependent points obviously correspond parallel lines in E 3 . 

3. The Figures Corresponding in E 3 to Dual Figures in P2 

3.1. The "Incidence" relation, that is a point being on a given I'm ( or a line passing through 
a point) is given by (2.1) as is known. The same relation can be expressed between the dual 
points and the dual lines of P2 naturally in terms of the dual unit vectors as 

Z-Z = 0 . {S = B+cS' , a- = S" + eS") (3.1) 
But this is the perpendicular concurrence condition (1.11') of the directed lines in E3 

corresponding to the dual unit vectors A a n d A'. Hence the incidence relation in P2 

between the points and lines corresponds to perpendicular concurrence in E 3 . As a result of 

this fact we have the following : The intersection point C of the lines A',B' in P2 

corresponds the common perpendicular of the lines corresponding to A\B' in E3 . 

Likewise, to the line joining A. B in P2 , there corresponds the common perpendicular of the 

lines corresponding to A, B in E 3 . For example, to a triangle in P2 , there corresponds a 

figure consisting of three skew lines and their three common perpendiculars. Since there 

corresponds two parallel lines in E 3 to two related points (lines) of P2 , obviously their 
common perpendicular becomes indefinite. Hence the necessity for the identification of 
dependent elements of P2 in the dual generalization comes in to the scene once more, since 

the maDDina from Po to E -> shnntri h» nno.nn Q 



One of the iviosi famous iiyujes (tfieorems) of F'2 is the well-known Pappos figute. In 
this figure, every one of the three pairs of lines joining the points 1,2,3 and [1], [2], [3] on the 
straight lines X, Y in the form [ [1] 2 ] = [12] ; [ [2] 1 ] = [2 1 ] ; [ [2] 3 ] = [2 3] ; i [3] 2 ] = ¡3 2] ; 

E [3] 1] = [3 1] ; [ [1] 3] ~ [1 3] have three intersection points III, II, I and these three intersection 
points are on a common straight line [0]. 

The corresponding figure in E 3 will be as follows : 

Consider three skew lines 1,2,3 perpendicularly intersecting the straight line A ' , and another 
triple [1], [2], [3], perpendicularly intersecting the straight line 1' . Let us denote the common 
perpendicular of [1] and 2 by [1 2] and one of [2] and 1 by [2 1] . The other common 
perpendiculars obtained exactly in the same way will be [2 3], [3 2] and [3 1], [1 3]. Let us call 
the common perpendicular of [1 2], [2 1] by III, one of [2 3], [3 2] by I and one of [3 1], [1 3] by 

II. Now, the theorem corresponding to Pappos' theorem in E 3 is as follows : These three 
common perpendiculars I, II, III have the same common perpendicular [G]. The result has been 
plotted axonometrically in Fig. I . 

The vectorial demonstration of this result in E 3 can be given as follows : 

Let us denote the dual unit vectors of the skew lines in E3 by A* which 

t't Ur 
perpendicularly intersects the line A ' , and of the ones which intersect Y , by A \ D'X" . As 
in the real case it can be easily shown that the necessary and sufficient condition for the three 
lines to intersect the same line perpendicularly is being zero of the mixed product of the dual 
unit vectors of three lines. Therefore we have 

( = = 0 (3.2) 

We will denote the common perpendicular of the dual unit vectors 

Thus, if we use the notation 

we can write 

P _ J l A # P _ i ? A / T f? P 

in S i n y. S i n or, N i n a , 

(3.3; j} - ^ A ^ ' I _ /I A ft 
1 ~ Sin j0, 2~ Sin p. 

where a,, (3,, 7 , ( / = 1 , 2 ) are the dual angles between the correspondent dual unit vectors. 

These angles cannot be purely dual since the mentioned lines are skew among themselves. 
We will obtain 

£ - ( ^ f t ) A ( ^ A # ) ^ _ AH')A(^A&) 

Sin a , Sin a , Sin a " ~ Sin (3{ Sin / i , Sin (3 

Sin y. Sin Sin y 

if we use the notation 

[U2]=£ , [llhti • M M 
Now we must show i'r.si (l\CK <"0 - 0 . Since the dug! ~i"'\!ars in the denominators (3.4) will 
r u i t h a n o zirw i j f f f j r i i) i.viil h a wim tct't'i t o n r n i / s i h a t 

; . 4 ) 



in operations, the vector identities 

A>A(}lAF)^(%-l:)}î-(!4-Îj)t: , ( /i A }i) A ((!"' A i ) ) 

(3.5) 

will be used and it will be shown at the end that the given expression is identically zero under 
the conditions (3.2). 

We want to show that the correspondent of Desargues figure which is taken as an axiom of 

P2 is satisfied in E 3 also. 
But first, let us explain the meaning of the paradox encountered here just now : "The proof 

of an axiom in any way." The mapping we have defined above uses the homogeneous 
coordinates. Therefore, it has been assumed that the Desargues axiom is valid in the method 
used in corresponding homogeneous coordinates to points or lines in P2 - Otherwise, the 
figures we call straight lines might as well be broken lines and the mentioned correspondence 
would have been impossible. 

Now let us consider the triangles ABC and AQB0CQ in P2 • Let us use the following 

notation : 

[AB] = (" , [BC]=A' , [CA]=B' ; [A0B0]=CQ , IB0C0)=A'0 

[CQA0]^B'O 

According to Desargues axiom, if the intersection points of the corresponding sides A',A'T) 

B\ B'0;C\C0 of two triangles denoted by 

[ AA0 ] = A* ( w e call the line AAQ as A* ) [ BB0 ] = B' [cc0]=c 

/I, ,[B',B'0} = B, , [C,CJ=t\ 

are on a straight line D' , the straight lines A* <B\C* connecting the corresponding 

vertices pass through the same point D and the converse is also true. (Fig. 2) 



On the other hand we have the following configuration in E 3 . If we denote the dual unit vectors 

corresponding to dual points and lines of P2 , similarly as we have done above, 

Sin or. Sin ß, Sin 
P P P P P P P 

/i P, Ä A C P, C A / I 
/i ~-: ——— . Ii 

Sin y Sin a Sin ß 

P' .?„ A $„ P ' Ê. A/L P ' /I A 

Sin yQ Sin «„ Sin ßn 

: 3 . 6 ) 

Sin a ' Sin /if' Sin 7 ' 

Hence, we must show that the relations 

> = ° • . f t ) = 0 ( 3 . 7 } 

are equivalent. This can be shown by a routine operation by using the identities (3.5). 
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