İstanbul Üniv. Fen Fak. Mat. Dergisi 57-58 (1998-1999), 103-111

SEMI-STRONG U NUMBERS IN THE P-ADIC FIELD Q_p (*)

Hülya DURU

Abstract. In this paper, by adjusting Alniaçik's article [1] to the p-adic numbers field, Q_p , we have obtained some uncountable subfields of Q_p .

Introduction. For the convenience of the reader we shall briefly recall Koksma's well known classification [2] for the p-adic numbers, which was introduced by Schlikewei [3].

For an algebraic number α , define the height $H(\alpha)$ as the height of the minimal polynomial of α , say $P(x) \in \mathbb{Z}[x]$, where the P is supposed to be normalized, such that, its coefficients are relatively prime.

For a p-adic number ξ in Q_p and a natural number n put

$$w_n^*(H,\xi) = \min_{\substack{\deg \alpha \leq n \\ H(\alpha) \leq H \\ \alpha \neq \xi}} |\xi - \alpha|_p$$

furthermore

$$w_n^*(\xi) = \lim_{H \to \infty} \sup\left(-\frac{\log w_n^*(H,\xi)}{\log H}\right)$$

and

$$w^*(\xi) = \lim_{n \to \infty} \sup \frac{w_n^*(\xi)}{n}.$$

ļ

Define $\mu^*(\xi)$ as being the smallest n, such that $w_n^*(\xi) = \infty$, if such an n exists. Otherwise put $\mu^*(\xi) = \infty$. Now call a p-adic number ξ a

(*)This is an English translation of the main part of the author's Ph.D. Thesis done at Istanbul University under the supervisor of Prof. Dr. Kamil Aluiaçik in 1996.

$$S^* - number \text{ if } 0 < w^*(\xi) < \infty \text{ and } \mu^*(\xi) = \infty,$$

$$T^* - number \text{ if } w^*(\xi) = \infty \quad \text{and } \mu^*(\xi) = \infty,$$

$$U^* - number \text{ if } w^*(\xi) = \infty \quad \text{and } \mu^*(\xi) < \infty.$$

Every $S^* = T^*$, $U^* = number$ is a $S = T^*$, $U = T^*$ number respectively. Moreover in [4] Long has proved that Mahler's subclasses U_m are equal to the Koksma's subclasses U_m^* .

For the proof of the main results we shall need the following lemmas.

Lemma 1. Let α, β be two p-adic algebraic numbers with different minimal polynomials. Then, for $|\alpha|_p = \mu^{-h}$ and $r = \min\{0, h\}$.

$$\|\alpha - \beta\|_p > \frac{c_1}{H(\alpha)^{M-1}H(\beta)^M},$$

where $M > \max\{\deg \alpha, dge\beta\}$ and $c_1 = \frac{p^{(M-1)|c||M(b(+1))}}{(2M!)}$ (Schlikewei [3]).

Lemma 2. Let $P(x) = a_n x^n + \ldots + a_0 \in Z[x]$. If α is a root of P then

 $||\alpha| + \beta |_p > \frac{1}{H(P)}$ (Morrison [5]).

Lemma 3. Let $\alpha_1, ..., \alpha_k$ $(k \ge 1)$ be algebraic numbers in Q_p with $Q[(\alpha_1, ..., \alpha_k); Q] = g$ and let $F(g, x_1, ..., x_k)$ be a polynomial with integral coefficients, whose degree in g is at least one. If η is an algebraic number such that $F(\eta, \alpha_1, ..., \alpha_k) = 0$, then the degree of $\eta \le dg$ and

$$h_{\eta} \leq 3^{2dg+(l_1+\ldots+l_k)g} .h_{\alpha}^{l_1g} ... h_{\alpha}^{l_kg}$$

where h_{η} is the height of η , h_{α_i} is the height of α_i (i = 1, ..., k). H is the maximum of the absolute values of the coefficients of F, l_i is the degree of F in x_i (i = 1, ..., k) and d is the degree of F in y_i (O.S.ICEN [6])

The first main result of one of this paper is the following theorem.

Theorem 1. Let $(\alpha_i)_{i \in N}$ be a sequence of p-adic algebraic numbers with (1) deg $\alpha_i = m_i \leq l$, $\lim_{r \to \infty} H(\alpha_i) = \infty$. (k > 0 constant), (2) $0 \leq |\alpha_{i+1} - \alpha_i|_p = \frac{1}{H(\alpha_i)^{w_i}}$, where $\lim_{r \to \infty} w_i = \infty$. (3) $|\alpha_{i+1} - \alpha_i|_p \leq \frac{1}{H(\alpha_i)^{\delta}}$ for some $\delta > 0$. Then $\lim_{r \to \infty} \alpha_i \in U_m^*$, where $m = \liminf_{r \to \infty} m_r$. *Proof.* It follows from lemma 2 and hypothesis (2) that consecutively $\alpha'_i s$ cannot be conjugates and if *i* is sufficiently large, $\|\alpha_{i+1}\|_p = \|\alpha_i\|_p$. Hence by putting $\|\alpha_i\|_p = p^{-h}$ $(h \in \mathbb{Z})$ and $t = \min\{0, h\}$ and using lemma 1, we get

(4)
$$\frac{c_0}{H(\alpha_i)^k H(\alpha_{i+1})^{k-1}} < |\alpha_{i+1} - \alpha_i|_p.$$

where $c_{0\pm} \frac{p^{(k-1)(i-k)(b_{1}+i)}}{(2k!)^{k}}$. Since $\lim_{i\to\infty} ||\alpha_{i+1} - \alpha_{i}||_{p} = 0$, the sequence $(\alpha_{i})_{i\in N}$ is a Cauchy sequence in Q_{p} and so $\lim_{i\to\infty} \alpha_{i} = \xi$ exists. Let's show that $\xi \in U_{m}^{*}$. First we shall prove that, for sufficiently large *i* and s > i. $||\alpha_{s} - \alpha_{i}||_{p} = ||\alpha_{i+1} - \alpha_{i}||_{p}$. Indeed, combining (4) and (2) and using both the facts that $H(\alpha_{i}) \to \infty$ and $w_{i} \to \infty$ we obtain

(5)
$$H(\alpha_i)^{\frac{w_i}{2}} < H(\alpha_{i+1})^k$$

and from this

(6)
$$H(\alpha_i)^{w_i} < H(\alpha_i)^{w_{i+1}}$$
 (*i* large enough).

Combining the relations (2) and (6) we get

$$|\alpha_{i+1} - \alpha_i|_p > |\alpha_{i+i} - \alpha_{i+i+1}|_p$$
, for each $i = 2, ..., s - i$.

Hence

(7)
$$|\alpha_s - \alpha_i|_p = |\alpha_{i+1} - \alpha_i|_p = \frac{1}{H(\alpha_i)^{w_i}}$$
 (*i* large and $s > i$)

Since $\alpha_i - \zeta_i$ for sufficiently large *i* there is a s > i such that

 $\|\xi - \alpha_s\|_p < H(\alpha_i)^{-w_{i+1}}.$

Therefore a combination of (6), (7) and (8) together with the equalities,

 $|\xi - \alpha_i|_p = \max\{|\xi - \alpha_s|_p, |\alpha_s - \alpha_i|_p\} = |\alpha_i - \alpha_s|_p = H(\alpha_i)^{-w_i},$ gives us

(9) $|\xi - \alpha_i|_p = H(\alpha_i)^{-w_i}$, (for *i* large).

On the other hand, since $\liminf_{i\to\infty} m_i = m$, we have a subsequence $(\alpha_{i_k})_{k\in\mathbb{N}}$ of $(\alpha_i)_{i\in\mathbb{N}}$ such that $\liminf_{k\to\infty} \alpha_{i_k} = m$. Hence for sufficiently large k, deg $\alpha_{i_k} = m$. Hence, using (9) we get $||\xi - \alpha_{i_k}||_p = H(\alpha_{i_k})^{-w_{i_k}}$, which shows that $\mu^*(\xi) \leq m$.

We shall complete the proof by showing the opposite inequality $\mu^*(\xi) \ge m$. For this we shall distinguish two cases according to m = 1 or m > 1. In

the case m = 1, by definition of $\mu^*(\xi)$, we have $\mu^*(\xi) \ge 1$. So together with $\mu^*(\xi) \le m = 1$, we obtain $\mu^*(\xi) = 1$.

Now suppose that m > 1. Let β be a p-adic number of degree < m. Since $\liminf_{i \to \infty} m_i = m$, $\deg \alpha_i \ge m$ for sufficiently large *i*. Applying lemma 1, we get

(10)
$$| \beta - \alpha_i |_p > c_1 H(\alpha_i)^{-(k-1)}, H(\beta)^{-k}$$
 (*i* large).

On the other hand, as $w_i \to \infty$, for sufficiently large *i*, we have

(11)
$$w_i > \frac{2k(k+\delta)}{\delta}$$

Now suppose that the p-adic algebraic number β satisfies the condition.

(12) $H(\beta) > \max\{H(\alpha_{i_0}), \frac{1}{\alpha_i}\}.$

where i_0 is a sufficiently large, fixed index. It is clear that there exists a natural number $i \ge i_0$ such that, for every p-adic algebraic number satisfying (12), we have

(13) $H(\alpha_i) \leq H(\beta) \leq H(\alpha_{i+1})$.

Taking into account (5), (11) and (13) we can have only one of the following cases:

(I)
$$H(\alpha_i) \leq H(\beta) \leq H(\alpha_{i+1})^{\frac{\beta}{2k}}$$

(14) or

(II)
$$H(\alpha_{i+1})^{\frac{c}{2k}} \leq H(\beta) \leq H(\alpha_{i+1})$$

Suppose that the first relation in (14) holds. Then a combination of (2), (3), (9), (10), (12) and (14) gives us

(15)
$$|\beta - \alpha_i|_p > H(\beta)^{-2k} > H(\alpha_{i+1})^{-\delta} > H(\alpha_i)^{-w_i} = |\xi - \alpha_i|_p$$
.

Furthermore, using the equation $|\xi - \beta|_p = \max\{|\xi - \alpha_i|_p, |\beta - \alpha_i|_p\}$, we get

(16) $|\xi - \beta_i|_p > H(\alpha_i)^{-2k}$ (for large *i*).

If he second relation in (14) holds, then using the relations (9), (10), (11), (12), we get

 $|\xi - \alpha_{i+1}|_p = H(\alpha_{i+1})^{-w_{i+1}} < H(\beta)^{\frac{-2k(k+\delta)}{\delta}} < H(\beta)^{\frac{-2k}{\delta} - k^2} < |\alpha_{i+1} - \beta|_p$

so that

(17) $|\xi - \beta|_p = |\alpha_{i+1} - \beta|_p > H(\beta)^{\frac{-2k^2}{\delta} - k}$.

As the exponent of $H(\beta)$ on tine right hand side of (17) is greater than that of (16), (17) is verified for all p-adie algebraic numbers of degree at most m-1 and height greater than $\max\{H(\alpha_{i_0}), \frac{1}{c_1}\}$. This shows us that $\mu^*(\xi) \ge m$. This result together with the inequality $\mu^*(\xi) \le m$ imply that $\mu^*(\xi) = m$ also in case m > 1, as well. Hence $\xi \in U_m$, and this completes the proof.

Definition 1. Given a U number ξ in Q_p . If there is a sequence (α_i) of p-adic algebraic numbers satisfying the conditions (1), (2) and 3 of Theorem 1, then we say that " $\xi = \lim_{i\to\infty} \alpha_i$ is an irregular semi-strong U - number."

In Theorem 1 we have seen that if $\liminf_{i\to\infty} m_i = m$, then $\xi \in U_m$.

In the sequel U^{is} and U^{is}_m will denote the set of all irregular semi-strong U^{-}, U_m^{-} numbers.

Example. If p is a prime number and α is a p-adic algebraic number of degree m, then

 $\kappa = \alpha + \sum_{i=1}^{\infty} p^{n!}$ is in U_m^{is} .

By defining $\alpha_n = \alpha + p^{1!} + ... + p^{n!}$, one can show that $(\alpha_n)_{n \in \mathbb{N}}$ satisfies the conditions of Theorem 1.

Definition 2. Let $(x_i)_{i \in N}$ be a strictly increasing sequence in natural numbers satisfying $\lim_{i\to\infty} \frac{\log x_{i+1}}{\log x_i} = \infty$ and $(a_i)_{i\in N}$ be another natural numbers sequence. We say that "the sequence $(a_i)_{i\in N}$ is comparable with $(x_i)_{i\in N}$ " if there exists a subsequence $(x_{n_i})_{i\in N}$ of $(x_i)_{i\in N}$ and positive real numbers k_1, k_2 such that

 $x_{n_i}^{k_1} < a_i \le x_{n_i}^{k_2}$ (i = 1, 2, ...).

The main result of the paper is the following theorem.

Theorem 2. Let $(x_i)_{i \in N}$ be as above definition. Then the set, $F = \left\{ \xi \in U_m^{is} : (H(\alpha_i))_{i \in N} \text{ is comparable with } (x_i)_{i \in N} \text{ , where } \lim_{i \to \infty} \alpha_i = \xi, m \in N \right\} \cup A$

is a subfield of continuum cardinality of Q_p . Here A denotes the set of p-adic algebraic numbers.

Proof. Let $y_1, y_2 \in F$. Assume that $y_1 \in U_r^{is}, y_2 \in U_t^{is}$. Then there are positive numbers $s_1, s_2, s_3, s_4, \rho_1, \rho_2$ and sequences of algebraic numbers $(\alpha_i)_{i \in N}, (\beta_i)_{i \in N}$ (deg $\alpha_i \leq l, \deg \beta_i \leq l$ where $l \geq \max\{r, l\}$) such that

(A) $0 < |||\alpha_{i+1} - \alpha_i||_p = \frac{1}{H(\alpha_i)^{w_i}} < \frac{1}{H(\alpha_{i+1})^{p_i}}$, where $\lim_{i \to \infty} w_i = \infty$. $\lim_{t \to \infty} H(\alpha_i) = \infty$

 $(B) |0| < |\beta_{i+1} - \beta_i|_p = \frac{1}{H(\beta_i)^{r_i}} < \frac{1}{H(\beta_{i+1})^{p_2}} \text{, where } \lim_{i \to \infty} \nu_i = \infty, \lim_{i \to \infty} H(\beta_i) = \infty$

and the subsequences $(x_{n_i})_{i \in N}$, $(x_{m_i})_{i \in N}$ of $(x_i)_{i \in N}$ satisfying

(C) $x_{m_i}^{s_1} < H(\alpha_i) \le x_{m_i}^{s_2}$ (i = 1, 2, ...). (D) $x_{m_i}^{s_3} < H(\beta_i) \le x_{m_i}^{s_4}$ (i = 1, 2, ...).

Let $(|x_{r_i}\rangle_{i \in N}$ denote the monotonic union sequence formed from $(x_{n_i})_{i \in N}$, $(x_{m_i})_{i \in N}$. Assume that $|x_{r_{i_0}}\rangle > \max\{H(\alpha_i), H(\beta_i)\}$. We shall introduce positive integers $j(i), \ell(i)$ and then p-adic algebraic numbers δ_i as follows. For $i \geq i_0$.

$$n_{j(i)} = \max\{n_{\nu} : n_{\nu} \le r_i\}$$

(18)

$$m_{t(i)} = \max\{ m_{\nu} : m_{\nu} \le r_i \}$$
$$\delta_i = \alpha_{j(i)} + \beta_{t(i)}.$$

Now consider the set $B = \{\delta_i : i \ge i_0\}$. If B contains only finitely many p-adic algebraic numbers then $\lim_{i\to\infty} \delta_i = y_1 + y_2 \in B$. Hence $y_1 + y_2$ is a p-adic algebraic numbers i.e. $y_1 + y_2 \in F$.

Hence we suppose that *B* contains infinitely many p-adic algebraic numbers. In this case, we define a subsequence $(\delta_{i_k})_{k \in \mathbb{N}}$ of $(\delta_i)_{i \in \mathbb{N}}$ as follows.

(19) If $\delta_{i_{k+1}} = \delta_{i_k+s}$ then $\delta_{i_k} = \delta_{i_k+1} = \dots = \delta_{i_k+s-1}$ ($s = 1, 2, \dots, i_{k+1} - i_k - 1, i_{k+1} - i_k$)

Now by using lemma 3.(18).(C) and (D), we have

 $H(\delta_{i_k}) < 3^{4l^2} x_{r_{i_k}}^{l^2(s_2+s_4)}$. Since $x_{r_{i_k}} \to \infty$, for large k we get

$$(20)_k \ H \ (\delta_{i_k}) < x_{r_{i_k}}^{s_5} \ \text{where} \ s_5 = l^2(s_2 + s_4).$$

On the other hand, from the definitions of j(i) and t(i), we see that

(21)
$$0 \le j(i_{k+1}) - j(i_{k+1} - 1) \le 1$$
 and $0 \le t(i_{k+1}) - t(i_{k+1} - 1) \le 1$.

Moreover, from the definition of $(\delta_{i_k})_{k \in \mathbb{N}}$, one can see easily that the numbers in (21) cannot be zero at the same time. iff the numbers are both different from zero, then a combination of (A), (B), (C), (19) and (21) gives us

 $(22) | \delta_{i_{k+1}} - \delta_{i_k} |_p = | \delta_{i_{k+1}} - \delta_{i_{k+1}-1} |_p \le \max\{| \alpha_{J(i_{k+1})} - \alpha_{J(i_{k+1}-1)} |_p, | \\ \beta_{I(i_{k+1})} - \beta_{I(i_{k+1}-1)} |_p\} < \max\{(H(\alpha_{J(i_{k+1}-1)+1}))^{-\rho_1}, (H(\beta_{I(i_{k+1}-1)+1}))^{-\rho_2}\} = \frac{1}{r_{i_{k+1}}^{1}} .$

where $\rho = \min\{s_1\rho_1, s_3\rho_2\}$. Hence using the relations $(20)_{k+1}$ and (22) and putting $\nu_{i_k} = \frac{\rho \log x_{r_{i_k}+1}}{s_5 \log x_{r_{i_k}}}$, we get

(23)
$$| \delta_{i_{k+1}} - \delta_{i_k} |_p < H(\delta_{i_k})^{-\nu_{i_k}}$$
 (k large).

Let's show that $H(\delta_{i_k}) \to \infty$ as $k \to \infty$. Indeed, by using lemma 1,(22) and the hypothesis $\frac{\log x_{r_{i_k+1}}}{\log x_{r_{i_k}}} \to \infty$, for sufficiently large k, we have $x_{r_{i_k}}^{\frac{5p}{8l^2}} < H(\delta_{i_{k+1}})$. Thus, since the limit of the left side of the last relation is infinity, we get $H(\delta_{i_k}) \to \infty$. Hence by Theorem 1, we have $\lim_{k\to\infty} \delta_{i_k} = y_1 + y_2 \in U_m^*$ (for some $m \leq l^2$).

Now we show that $(H(\delta_{i_k}))_{k \in \mathbb{N}}$ is comparable with $(x_{r_{i_k}})_{k \in \mathbb{N}}$. To this end, first remark that, for sufficiently large k, the sequence $(H(\delta_{i_k}))_{k \in \mathbb{N}}$ is strictly increasing and then by using lemma 1 and (22) we get

(24) $c_2 H(\delta_{i_k})^{-l^2} H(\delta_{i_{k+1}})^{-l^2} < |\delta_{i_{k+1}} - \delta_{i_k}|_p < x_{r_{i_{k+1}}}^{-\rho}$

Since $H(\delta_{i_k})$ is strictly increasing and $H(\delta_{i_k}) \to \infty$, It follows from (24),

$$x_{r_{i_{k+1}}}^{\frac{p}{3d^2}} < H(\delta_{i_{k+1}}).$$

Hence a combining the last relation above and $(20)_{k+1}$, for large k, gives us

$$x_{r_{i_{k+1}}}^{\frac{p}{3l^2}} < H(\delta_{i_{k+1}}) < x_{r_{i_{k+1}}}^{s_5}.$$

Hence $y_1 + y_2 \in F$.

Now we show that the product y_1y_2 is in F. To show this we shall approximate y_1y_2 by algebraic numbers δ_i^{\dagger} as defined as

(25) $\delta_i^{\dagger} = \alpha_{j(i)} \beta_{t(i)}$ ($i \ge i_0$).

If $B = \{: i \ge i_0\}$ contains only finitely many p-adic algebraic numbers, then it is closed. Therefore by (25) we have $y_1y_2 \in A \subset F$. If B is not finite, we can choose a subsequence $(\delta_{i_k}^{\dagger})_{k \in \mathbb{N}}$ of $(\delta_i^{\dagger})_{i \in \mathbb{N}}$ as follows.

If
$$\delta_{i_{k+1}}^{\dagger} = \delta_{i_k+s}^{\dagger}$$
 then $\delta_{i_k}^{\dagger} = \delta_{i_k+1}^{\dagger} = \dots = \delta_{i_k+s-1}^{\dagger}$ ($s = 1, 2..., i_{k+1} - i_k - 1, i_{k+1} - i_k$)

Now using (18), (C) and (22) we obtain

where $M = \max\{1, ||y_1|_p, ||y_2|_p\}$. On the other hand, using an argument similar the one used in the previous steps, we obtain

(27) $H(\delta_{i_k}^{\dagger}) < x_{i_k}^{3l^2}$ (for k large).

Hence a combination of (26) and (27) gives us

 $|\delta_{i_{k+1}}^{\dagger} - \delta_{i_k}^{\dagger}|_p < H(\delta_{i_{k+1}}^{\dagger})^{\frac{\lambda}{6t^2}}$ (for k large).

Moreover, using the same arguments that we have used to get (23), we obtain

 $|\delta_{i_{k+1}}^{\dagger} - \delta_{i_{k}}^{\dagger}|_{p} < H(\delta_{i_{k}}^{\dagger})^{\frac{-\nu_{i_{k}}}{2}} \text{ (for } k \text{ large)},$

which shows that y_1y_2 is in U_m^{is} for some $m \leq l^2$. Next, as we have shown for $(H(\delta_{i_k}))_{k\in N}$, one can easily show that respectively, $H(\delta_{i_k}^{\dagger}) \to \infty$ and $(H(\delta_{i_k}^{\dagger}))_{k\in N}$ is comparable with $(x_{r_{i_k}})_{k\in N}$ and so $y_1y_2 \in F$.

Finally let $\alpha \in A$ and $y_1 \in F - A$. Then using an similar argument to the one used to prove that $\alpha + y_1 \in F$ and approximating $\alpha y_1, \alpha + y_4$ by $(\alpha \alpha_i)_{i \in N}, (\alpha + \alpha_i)_{i \in N}$ respectively, one shows that $\alpha y_1, \alpha + y_1 \in F$.

References

[1] K. Aluiaçik, On semi-strong U-numbers, Acta Arithmetica, LX, 4, (1992), 349-358.

[2] J. F. Koksma, Uber die Mahlersche Klasseneintellung der Transzendenten Zahlen und die Approximation Komplexer Zahlen Durch Algebraische Zahlen, Mh. Math. Phys. 48, (1939), 176-189.

[3] H.P.Schlickewei, P-Adic T-Numbers Do Exist, Acta Arithmetica, XXXIX. (1981), 181-191.

[4] X., Xin .Long, Mahler's Classification of P-Adic Numbers, Pure Apply, Math. 5, (1989), 73-80.

[5] J. F. Morrison, Approximation of p-Adic Numbers by Algebraic Numbers of Bounded Degree, Journal of Number Theory 10, (1978), 334-350.

[6] O.Ş.Içen, Uber die Functionwerte der p-Adisch Elliptischen Functionen I und II, İstanbul Üniv, Feu Fak, Mecm. Ser, A, 38, (1973), 25-35.

[7] E. Maillet, Théorie des nombers transcendants (Paris, 1906).

Hülya DURU Istanbul university Faculty of Sciences Department of Mathematics 34459 Vezneciler- Istanbul