Zero-divisor graphs of Catalan monoid

Kemal Toker ${ }^{(D)}$
Department of Mathematics, Faculty of Science, Harran University, Şanluurfa, Turkey

Abstract

Let \mathcal{C}_{n} be the Catalan monoid on $X_{n}=\{1, \ldots, n\}$ under its natural order. In this paper, we describe the sets of left zero-divisors, right zero-divisors and two sided zero-divisors of \mathcal{C}_{n}; and their numbers. For $n \geq 4$, we define an undirected graph $\Gamma\left(\mathcal{C}_{n}\right)$ associated with \mathfrak{C}_{n} whose vertices are the two sided zero-divisors of \mathcal{C}_{n} excluding the zero element θ of \mathcal{C}_{n} with distinct two vertices α and β joined by an edge in case $\alpha \beta=\theta=\beta \alpha$. Then we first prove that $\Gamma\left(\mathcal{C}_{n}\right)$ is a connected graph, and then we find the diameter, radius, girth, domination number, clique number and chromatic numbers and the degrees of all vertices of $\Gamma\left(\mathrm{C}_{n}\right)$. Moreover, we prove that $\Gamma\left(\mathrm{C}_{n}\right)$ is a chordal graph, and so a perfect graph.

Mathematics Subject Classification (2020). 20M20, 97 K 30
Keywords. Catalan monoid, zero-divisor graph, perfect graph, clique number

1. Introduction

The zero-divisor graph was introduced by Beck on commutative rings in [3]. In Beck's definition zero element is a vertex in the graph too, later the standard definition of zerodivisor graphs on commutative rings was given by Anderson and Livingston in [1]. Let R be commutative ring, let $Z(R)$ be the set of the zero-divisors of R. The zero-divisor graph of R is an undirected graph $\Gamma(R)$ with vertices $Z(R) \backslash\{0\}$, where distinct vertices x and y of $\Gamma(R)$ are adjacent if and only if $x y=0$. Demeyer et. all have considered this definition for semigroups and they defined and found some basic properties of the zerodivisor graph of a commutative semigroup with zero in [5,6]. In particular, they proved that the zero-divisor graph of a commutative semigroup with zero is connected. Since then, the zero-divisor graphs of some special classes of commutative semigroups with zero have been researched (see [4, 17]). For non-commutative rings, a directed zero-divisor graph and some undirected zero-divisor graphs were defined by Redmond in [14]. For a ring R let $Z_{R}(T)$ be the set of all two sided zero-divisor elements of R. Then Redmond defines an undirected zero-divisor graph $\Gamma(R)$ with vertices $Z_{R}(T) \backslash\{0\}$, where distinct vertices x and y are adjacent with a single edge if and only if $x y=0=y x$ (see [14, Definition 3.4.]). If R is a non-commutative ring, then $\Gamma(R)$ need not to be connected (for an example see [14, Figure 9.]) and if R is a commutative ring then $\Gamma(R)$ coincide with standard zero-divisor graph of R in [14]. As Demeyer et. all, we can consider this definition for non-commutative semigroups which have zero.

[^0]Let $X_{n}=\{1, \ldots, n\}$ finite set with its natural order. Let T_{n} be the full transformation semigroup on X_{n}. We call a transformation $\alpha: X_{n} \rightarrow X_{n}$ order-preserving if $x \leq y$ implies $x \alpha \leq y \alpha$ for all $x, y \in X_{n}$, and order-decreasing if $x \alpha \leq x$ for all $x \in X_{n}$. Some properties of the semigroup \mathcal{C}_{n}, which consists of all order-preserving and order-decreasing transformations have been investigated over the last forty years (see, for example [2,10,12]). Moreover, \mathfrak{C}_{n} is called Catalan monoid too. Since $1 \alpha=1$ for every $\alpha \in \mathcal{C}_{n}$, if we take and fix $\theta \in \mathcal{C}_{n}$ as the unique constant map, then $\theta \alpha=\theta=\alpha \theta$ for every $\alpha \in \mathcal{C}_{n}$, and so θ is the zero element of \mathfrak{C}_{n}. Moreover, it is clear that \mathcal{C}_{n} is a non-commutative semigroup for $n \geq 3$.

For $n \geq 2$ let $\mathfrak{C}_{n}^{*}=\mathcal{C}_{n} \backslash\{\theta\}$. Then we define the following sets

$$
\begin{aligned}
& L=L\left(\mathcal{C}_{n}\right)=\left\{\alpha \in \mathcal{C}_{n} \mid \alpha \beta=\theta \text { for some } \beta \in \mathfrak{C}_{n}^{*}\right\}, \\
& R=R\left(\mathfrak{C}_{n}\right)=\left\{\alpha \in \mathfrak{C}_{n} \mid \gamma \alpha=\theta \text { for some } \gamma \in \mathfrak{C}_{n}^{*}\right\} \text { and } \\
& T=T\left(\mathfrak{C}_{n}\right)=\left\{\alpha \in \mathfrak{C}_{n} \mid \alpha \beta=\theta=\gamma \alpha \text { for some } \beta, \gamma \in \mathfrak{C}_{n}^{*}\right\}=L \cap R
\end{aligned}
$$

which are called the set of left zero-divisors, right zero-divisors and (two sided) zero-divisors of \mathcal{C}_{n}, respectively. It is known that the cardinality of \mathcal{C}_{n} is $\frac{1}{n+1}\binom{2 n}{n}$ which is called n-th Catalan number (see, for example [10]). In this paper we find the left zero-divisors, right zero-divisors and zero-divisors of \mathfrak{C}_{n}, and then we find their numbers.

For a semigroup S with zero 0 if $T(S) \backslash\{0\} \neq \emptyset$ where $T(S)=\{z \in S \mid z x=0=$ $y z$ for $x, y \in S \backslash\{0\}\}$, then we similarly define the (undirected) zero-divisor graph $\Gamma(S)$ associated with S whose the set of vertices is $T(S) \backslash\{0\}$ with distinct two vertices joined by an edge in case $x y=0=y x$ for some $x, y \in T(S) \backslash\{0\}$. Notice that $\theta \in T\left(\mathfrak{C}_{n}\right)$ for all $n \geq 2$, but $T\left(\mathcal{C}_{n}\right) \backslash\{\theta\} \neq \emptyset$ if $n \geq 3$. Moreover, $\Gamma\left(\mathcal{C}_{3}\right)$ is a graph with exactly one vertex and no edge. In this paper, we prove that $\Gamma\left(\mathfrak{C}_{n}\right)$ is a connected graph and then we find the diameter, radius, girth, domination number, clique and chromatic numbers and the degrees of all vertices of $\Gamma\left(\mathcal{C}_{n}\right)$ for $n \geq 4$. Moreover, we prove that $\Gamma\left(\mathcal{C}_{n}\right)$ is a chordal graph, and so a perfect graph for $n \geq 4$.

For semigroup terminology see [9,11] and for graph theoretical terminology see [16].

2. Primaries

A lattice path L in \mathbb{Z}^{d} of lenght k with steps in S is a sequence $v_{0}, v_{1}, \ldots, v_{k}$ in \mathbb{Z}^{d} such that each consecutive difference $v_{i}-v_{i-1}$ lies in S for every $i=1, \ldots, k$. In the twodimensional space \mathbb{Z}^{2}, let $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ be two points with $x_{1} \leq x_{2}$ and $y_{1} \leq y_{2}$. Then a North-East (NE) lattice path from $\left(x_{1}, y_{1}\right)$ to $\left(x_{2}, y_{2}\right)$ is a lattice path in \mathbb{Z}^{2} with steps in $S=\{(0,1),(1,0)\}$. $(0,1)$ steps are called North steps, and $(1,0)$ steps are called East steps. For $n \in \mathbb{Z}^{+}$a Dyck path is a NE lattice path from $(0,0)$ to (n, n) that lies below but may touch the diagonal $y=x$ (see, for example [13,15]). It is a well-known fact that the number of all the Dyck paths from $(0,0)$ to (n, n) is

$$
C_{n}=\frac{1}{n+1}\binom{2 n}{n}
$$

the n-th Catalan number. (Andre's) reflection principle is a tool to prove this fact (see [8]). Moreover, Higgins proved that the cardinality of \mathcal{C}_{n} is equal to C_{n} in [10]. Thus there are bijections from \mathcal{C}_{n} to $D P_{n}$ which is the set of Dyck paths from $(0,0)$ to (n, n). Since bijections from \mathcal{C}_{n} to $D P_{n}$ are useful throughout this paper, we state and prove this well-known fact with defining a bijection from \mathcal{C}_{n} to $D P_{n}$.

Proposition 2.1. Let $D P_{n}$ be the set of Dyck paths from $(0,0)$ to (n, n). Then there is a bijection from \mathfrak{C}_{n} to $D P_{n}$.

Proof. We define a function $f: \mathrm{C}_{n} \rightarrow D P_{n}$ as follows: For the zero element θ, let $\theta f=P_{\theta}$ where

$$
P_{\theta}:(0,0)-(1,0)-\cdots-(n, 0)-(n, 1)-\cdots-(n, n),
$$

which is clearly a Dyck path. For any $\alpha \in \mathcal{C}_{n} \backslash\{\theta\}$ and for any $i \in X_{n}$ let $h_{i}(\alpha)$ be the horizontal line from $(i-1, i \alpha-1)$ to $(i, i \alpha-1)$. For every $i \in X_{n}$, since $i \alpha \leq i, h_{i}(\alpha)$ does not cross the diagonal. Notice that if $i \alpha=(i+1) \alpha$ for any $1 \leq i \leq n-1$, then $h_{i}(\alpha)$ and $h_{i+1}(\alpha)$ are adjacent lines, and that if $i \alpha \neq(i+1) \alpha$ then $h_{i}(\alpha)$ lower than $h_{i+1}(\alpha)$. Since $\alpha \neq \theta$ there exists at least one $i \in X_{n-1}$ such that $h_{i}(\alpha)$ lower than $h_{i+1}(\alpha)$. Suppose that there exist k many lower horizontal lines, say $h_{i_{1}}(\alpha), \ldots, h_{i_{k}}(\alpha)$ with $i_{1}<\cdots<i_{k}<n$. Notice that $i_{1} \alpha=1$. Then let $\alpha f=P_{\alpha}$ where

$$
\begin{aligned}
P_{\alpha}: & (0,0)-\cdots-\left(i_{1}-1,0\right)-\left(i_{1}, 0\right)-\left(i_{1}, 1\right)-\cdots-\left(i_{1}, i_{2} \alpha-1\right) \\
& -\left(i_{1}+1, i_{2} \alpha-1\right)-\cdots-\left(i_{2}-1, i_{2} \alpha-1\right)-\left(i_{2}, i_{2} \alpha-1\right) \\
& -\left(i_{2}, i_{2} \alpha\right)-\cdots-\left(i_{2}, i_{3} \alpha-1\right)-\left(i_{2}+1, i_{3} \alpha-1\right)-\cdots \\
& -\left(i_{k-1}, i_{k} \alpha-1\right)-\left(i_{k-1}+1, i_{k} \alpha-1\right)-\cdots \\
& -\left(i_{k}-1, i_{k} \alpha-1\right)-\left(i_{k}, i_{k} \alpha-1\right)-\left(i_{k}, i_{k} \alpha\right)-\cdots-\left(i_{k}, n \alpha-1\right) \\
& -\left(i_{k}+1, n \alpha-1\right)-\cdots-(n, n \alpha-1)-(n, n \alpha)-\cdots-(n, n),
\end{aligned}
$$

which is clearly a Dyck path.
Let α and β be distinct two elements in \mathcal{C}_{n}. Then there exists at least one $2 \leq i \leq n$ such that $i \alpha \neq i \beta$, and so the horizontal lines $h_{i}(\alpha)$ and $h_{i}(\beta)$ are different. Thus f is injective.

For any $P \in D P_{n}$ there are n many horizontal lines of length 1 in P, say $h_{1}, h_{2}, \ldots, h_{n}$ from left to right. Let $y_{1}, y_{2}, \ldots, y_{n}$ be the ordinates of the horizontal lines, respectively. Notice that $y_{1} \leq y_{2} \leq \cdots \leq y_{n}$ and that $y_{1}=0, y_{i} \leq i-1$ for $2 \leq i \leq n$. Then we consider the transformation $\alpha: X_{n} \rightarrow X_{n}$ defined by $i \alpha=y_{i}+1$ for each $i \in X_{n}$. Then it is clear that $\alpha \in \mathcal{C}_{n}$ and $\alpha f=P$, and so f is onto. Therefore, f is a bijection, as required.

For an example, let

$$
\alpha=\left(\begin{array}{ccccc}
1 & 2 & 3 & 4 & 5 \\
1 & 1 & 3 & 3 & 5
\end{array}\right) \in \mathfrak{C}_{5},
$$

and let f be the function defined in the proof of Proposition 2.1. Then the horizontal lines are

$$
\begin{array}{ll}
h_{1}(\alpha)=(0,0)-(1,0), & h_{2}(\alpha)=(1,0)-(2,0), \quad h_{3}(\alpha)=(2,2)-(3,2), \\
h_{4}(\alpha)=(3,2)-(4,2), & h_{5}(\alpha)=(4,4)-(5,4) .
\end{array}
$$

Moreover, the Dyck path associated with α is

$$
\begin{aligned}
\alpha f: & (0,0)-(1,0)-(2,0)-(2,1)-(2,2)-(3,2)-(4,2)-(4,3) \\
& -(4,4)-(5,4)-(5,5) .
\end{aligned}
$$

3. Zero-divisors of \mathcal{C}_{n}

In this section, we find the left zero-divisors, right zero-divisors and two-sided zerodivisors of ϱ_{n} and their numbers.
Lemma 3.1. For $n \geq 2$, let L be the set of left zero-divisors and R be the set of right zero-divisors of \mathfrak{C}_{n}. Then we have

$$
L=\left\{\alpha \in \mathfrak{C}_{n} \mid n \alpha<n\right\} \text { and } R=\left\{\alpha \in \mathfrak{C}_{n} \mid 2 \alpha=1\right\} .
$$

Proof. Let $n \geq 2$, and let $\alpha \in \mathcal{C}_{n}$ such that $n \alpha<n$. If we consider the transformation which defined by

$$
i \beta= \begin{cases}1 & i \leq n \alpha \\ 2 & i>n \alpha,\end{cases}
$$

then it is clear that $\beta \in \mathfrak{C}_{n}^{*}=\mathfrak{C}_{n} \backslash\{\theta\}$ and $\alpha \beta=\theta$.

Conversely, let α be a left zero-divisor of \mathfrak{C}_{n}. Then there exists $\gamma \in \mathfrak{C}_{n}^{*}$ such that $\alpha \gamma=\theta$. If we assume that $n \alpha=n$, then we have

$$
n \gamma=(n \alpha) \gamma=n \theta=1,
$$

and so $\gamma=\theta$, which is a contradiction. Therefore, the set of all the left-zero divisors of \mathcal{C}_{n} is L.

Let $\alpha \in \mathfrak{C}_{n}$ such that $2 \alpha=1$. If we consider the transformation which defined by

$$
i \lambda= \begin{cases}1 & i=1 \\ 2 & i \neq 1,\end{cases}
$$

then it is clear that $\lambda \in \mathcal{C}_{n}^{*}=\mathcal{C}_{n} \backslash\{\theta\}$ and $\lambda \alpha=\theta$.
Conversely, let α be a right zero-divisor of \mathfrak{C}_{n}. Then there exists $\mu \in \mathcal{C}_{n}^{*}$ such that $\mu \alpha=\theta$. If we assume that $2 \alpha \neq 1$, then we have $2 \alpha=2$ and $i \alpha \geq 2$ for every $2 \leq i \leq n$. Since the equation $(i \mu) \alpha=i \theta=1$, we must have $i \mu=1$ for every $1 \leq i \leq n$, and so $\mu=\theta$, which is a contradiction. Therefore, the set of all the right-zero divisors of \mathcal{C}_{n} is R.
Lemma 3.2. For $n \geq 2$ let L be the set of left zero-divisors and R be the set of right zero-divisors of \mathfrak{C}_{n}. Then we have

$$
|L|=|R|=\frac{3}{n+1}\binom{2 n-2}{n} .
$$

Proof. For $n \geq 2$ let $A=\left\{\alpha \in \mathcal{C}_{n} \mid n \alpha=n\right\}$. If we consider the function $f: A \rightarrow \mathcal{C}_{n-1}$ defined by $\alpha f=\alpha_{\left.\right|_{X_{n-1}}}$ for every $\alpha \in A$, then it is clear that f is a bijection, and so $|A|=\left|\mathfrak{C}_{n-1}\right|$. Then it follows from Lemma 3.1 that $L=\mathfrak{C}_{n} \backslash A$, and so

$$
|L|=\frac{1}{n+1}\binom{2 n}{n}-\frac{1}{n}\binom{2 n-2}{n-1}=\frac{3}{n+1}\binom{2 n-2}{n}
$$

Let $B=\left\{\alpha \in \mathcal{C}_{n} \mid 2 \alpha=2\right\}$. For every $\alpha \in B$ if we consider the transformation $\hat{\alpha}: X_{n-1} \rightarrow X_{n-1}$ defined by $i \hat{\alpha}=(i+1) \alpha-1$, then it is clear that $\hat{\alpha} \in \mathcal{C}_{n-1}$. Moreover, if we consider the function $g: B \rightarrow \mathcal{C}_{n-1}$ defined by $\alpha g=\hat{\alpha}$ for every $\alpha \in B$, then it is also clear that g is a bijection, and so $|B|=\left|\mathcal{C}_{n-1}\right|$. Similarly, it follows from Lemma 3.1 that $|R|=\frac{3}{n+1}\binom{2 n-2}{n}$, as required.

If T is the set of all two sided zero-divisors of \mathcal{C}_{n}, then it is clear that

$$
T=L \cap R=\left\{\alpha \in \mathfrak{C}_{n} \mid 2 \alpha=1 \text { and } n \alpha<n\right\} .
$$

Thus, if $n=2$ then $T=\{\theta\}$, and if $n \geq 3$ then $T \backslash\{\theta\} \neq \emptyset$.
Lemma 3.3. For $n \geq 3$ and T be the two sided zero-divisors set of \mathcal{C}_{n}. If $n=3$ then $|T|=2$ and if $n \geq 4$ then

$$
|T|=\frac{3}{n+1}\binom{2 n-2}{n}-\frac{3}{n-3}\binom{2 n-4}{n}
$$

Proof. For $n=3$ it is clear that $|T|=2$. For $n \geq 4$ let $A=\left\{\alpha \in \mathcal{C}_{n} \mid n \alpha=n\right\}$ and $B=\left\{\alpha \in \mathfrak{C}_{n} \mid 2 \alpha=2\right\}$. Then since $T=L \cap R$, it follows from Lemma 3.1 that

$$
T=\left(\mathfrak{C}_{n} \backslash A\right) \cap\left(\mathfrak{C}_{n} \backslash B\right)=\mathfrak{C}_{n} \backslash(A \cup B)
$$

Since $A \cap B=\left\{\alpha \in \mathcal{C}_{n} \mid 2 \alpha=2\right.$ and $\left.n \alpha=n\right\}$, we similarly define a bijection from $A \cap B$ to \mathcal{C}_{n-2} so that the cardinality of $A \cap B$ is Catalan number C_{n-2}. Therefore,

$$
\begin{aligned}
|T| & =\left|\mathfrak{C}_{n}\right|-|A|-|B|+|A \cap B|=C_{n}-2 C_{n-1}+C_{n-2} \\
& =\frac{3}{n+1}\binom{2 n-2}{n}-\frac{3}{n-3}\binom{2 n-4}{n},
\end{aligned}
$$

as required.

4. Zero-divisor graph of \mathfrak{C}_{n}

Let $\Gamma=(V(\Gamma), E(\Gamma))$ be an undirected graph, $V(\Gamma)$ denotes the vertex set of Γ and $E(\Gamma)$ denotes the edge set of Γ. If Γ contains no loops or multiple edges then Γ is called a simple graph. In this section we shall assume that Γ is a simple graph. For distinct two vertices $u, v \in V(\Gamma)$ if there exist distinct vertices $v_{0}, v_{1}, \ldots, v_{n} \in V(\Gamma)$ such that $v_{0}=u$, $v_{n}=v$ and $v_{i-1}-v_{i}$ is an edge in $E(\Gamma)$ for each $1 \leq i \leq n$, then $u-v_{1}-\cdots-v_{n-1}-v$ is called a path from u to v of length n in Γ. For every distinct two vertices $u, v \in V(\Gamma)$ if there exits a path from u to v, then Γ is called a connected graph. Let $u, v \in V(\Gamma)$ and let u, v be different vertices, then the length of the shortest path between u and v in Γ is denoted by $d_{\Gamma}(u, v)$. The eccentricity of a vertex v in a connected simple graph Γ is denoted by $\operatorname{ecc}(v)$ and

$$
\operatorname{ecc}(v)=\max \left\{d_{\Gamma}(u, v) \mid u \in V(\Gamma)\right\} .
$$

The diameter $\operatorname{diam}(\Gamma)$, the radius $\operatorname{rad}(\Gamma)$ and the central vertex set $C(\Gamma)$ of Γ defined by

$$
\begin{aligned}
\operatorname{diam}(\Gamma) & =\max \{\operatorname{ecc}(v) \mid v \in V(\Gamma)\} \\
\operatorname{rad}(\Gamma) & =\min \{\operatorname{ecc}(v) \mid v \in V(\Gamma)\} \text { and } \\
C(\Gamma) & =\{v \in V(\Gamma) \mid \operatorname{ecc}(v)=\operatorname{rad}(\Gamma)\},
\end{aligned}
$$

respectively. The degree of a vertex $v \in V(\Gamma)$ is denoted by $\operatorname{deg}_{\Gamma}(v)$ and it is the number of adjacent vertices to v in Γ. Moreover $\Delta(\Gamma)$ shows that the maximum degree and $\delta(\Gamma)$ shows that minimum degree among all the degrees in Γ.
Let D be a non-empty subset of the vertex set $V(\Gamma)$ of Γ. For each vertices of Γ, if the vertex in D or the vertex is adjacent to D then D is called a dominating set for Γ. The domination number of Γ is

$$
\min \{|D| \mid D \text { is a dominating set of } \Gamma\}
$$

and this number is denoted by $\gamma(\Gamma)$. In Γ the length of shortest cycle is called girth of Γ and it is denoted by $\operatorname{gr}(\Gamma)$, moreover if Γ does not contain any cycles, then its girth is defined to be infinity.
Let C be the non-empty subset of $V(\Gamma)$, if u and v are adjacent vertices in Γ for every $u, v \in C$, then C is called a clique. Number of all the vertices in any maximal clique of Γ is called clique number of Γ and it is denoted by $\omega(\Gamma)$. If we colour all the vertices in Γ with the rule of no two adjacent vertices have the same colour, then the minimum number of colours needed to colour of Γ is called chromatic number of Γ, it is denoted by $\chi(\Gamma)$.

Let $V^{\prime} \subseteq V(\Gamma)$. The (vertex) induced subgraph $\Gamma^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ is a subgraph of Γ and its vertex set is V^{\prime}, moreover its edge set consists of all of the edges in $E(\Gamma)$ that have both endpoints in V^{\prime}. If $\chi(\Lambda)=\omega(\Lambda)$ for each induced subgraph Λ of Γ, in this case Γ is called a perfect graph. A chordal graph is a simple graph, it does not contain an induced cycle of length 4 or more. Thus in chordal graphs every induced cycle has exactly three vertices.

In this section we prove that $\Gamma\left(\mathrm{C}_{n}\right)$ is a connected graph and then we find the diameter, radius, girth, domination number, clique number and chromatic numbers and the degrees of all vertices of $\Gamma\left(\bigodot_{n}\right)$ for $n \geq 4$. Moreover, we prove that $\Gamma\left(\bigodot_{n}\right)$ is a chordal graph, and so a perfect graph for $n \geq 4$.
For $n \geq 2$ and $\alpha \in \mathcal{C}_{n}^{*}$, let k_{α} be the element of X_{n-1} such that $k_{\alpha} \alpha=1$ and $\left(k_{\alpha}+1\right) \alpha \neq$ 1 , and moreover, let $t_{\alpha}=n \alpha$. For $n \geq 3$ and for $\alpha \in T^{*}=T \backslash\{\theta\}$ observe that $2 \leq k_{\alpha}, t_{\alpha} \leq n-1$.
Lemma 4.1. Let $n \geq 3$ and $\alpha, \beta \in T^{*}$. Then $\alpha \beta=\theta$ if and only if $t_{\alpha} \leq k_{\beta}$. In particular, $\alpha^{2}=\theta$ if and only if $t_{\alpha} \leq k_{\alpha}$.
Proof. (\Rightarrow) For $n \geq 3$ and for $\alpha, \beta \in T^{*}$ let $\alpha \beta=\theta$. Assume that $t_{\alpha}>k_{\beta}$. Then $1=n(\alpha \beta)=(n \alpha) \beta=t_{\alpha} \beta \geq\left(k_{\beta}+1\right) \beta \geq 2$, which is a contradiction. Thus $t_{\alpha} \leq k_{\beta}$.
(\Leftarrow) For $n \geq 3$ and for $\alpha, \beta \in T^{*}$ let $t_{\alpha} \leq k_{\beta}$. Since $n(\alpha \beta)=(n \alpha) \beta=t_{\alpha} \beta=1, \alpha \beta=\theta$, as required.

As a result, for $n \geq 3$ and for $\alpha, \beta \in T^{*}, \alpha \beta=\theta=\beta \alpha$ if and only if $t_{\alpha} \leq k_{\beta}$ and $t_{\beta} \leq k_{\alpha}$.

Since $\Gamma\left(\mathcal{C}_{3}\right)$ is a graph which has exactly only one vertex and no edge, from now on we only consider the case $n \geq 4$. Moreover, for convenience, we use Γ instead of $\Gamma\left(\mathcal{C}_{n}\right)$. From Lemma 3.3 we have the following immediate corollary.
Corollary 4.2. For $n \geq 4,|V(\Gamma)|=\frac{3}{n+1}\binom{2 n-2}{n}-\frac{3}{n-3}\binom{2 n-4}{n}-1$.
For $n \geq 4$ we fix the following zero-divisor of \mathcal{C}_{n} :

$$
\pi=\left(\begin{array}{ccccc}
1 & 2 & \cdots & n-1 & n \tag{4.1}\\
1 & 1 & \cdots & 1 & 2
\end{array}\right)
$$

Lemma 4.3. Γ is a connected graph for each $n \geq 4$. In fact $\gamma(\Gamma)=1$ for $n \geq 4$.
Proof. For $n \geq 4$ consider π defined in (4.1). For each $\alpha \in T^{*} \backslash\{\pi\}$ it follows from Lemma 4.1 that $\alpha \pi=\theta=\pi \alpha$ since $t_{\alpha} \leq n-1$ and $2 \leq k_{\alpha}$. Thus every element in $T^{*} \backslash\{\pi\}$ is adjacent to π in Γ, so Γ is connected and $\gamma(\Gamma)=1$.

Lemma 4.4. $\operatorname{diam}(\Gamma)=2$ and $\operatorname{rad}(\Gamma)=1$ for $n \geq 4$. Moreover, $C(\Gamma)=\{\pi\}$.
Proof. For $n \geq 4$ if we consider π defined in (4.1), then it is clear that diam $(\Gamma) \leq 2$ and $\operatorname{rad}(\Gamma)=1$. To show that $\operatorname{diam}(\Gamma)=2$ consider two elements α and β in $T^{*} \backslash\{\pi\}$ such that $2 \leq k_{\alpha} \leq n-2$ and $t_{\beta}=n-1$. Now it follows from Lemma 4.1 that $\beta \alpha \neq \theta$, and so α and β are not adjacent vertices in Γ. Thus $\operatorname{ecc}(\alpha)=2$, and so $\operatorname{diam}(\Gamma)=2$.

In addition consider two elements α and β in $T^{*} \backslash\{\pi\}$ such that $3 \leq t_{\alpha} \leq n-1$ and $k_{\beta}=2$. Similarly, from Lemma 4.1, $\alpha \beta \neq \theta$, and so α and β are not adjacent vertices in Γ. Thus $\operatorname{ecc}(\alpha)=2$, and so

$$
C(\Gamma)=\left\{\alpha \in T^{*} \mid k_{\alpha}=n-1 \text { and } t_{\alpha}=2\right\}=\{\pi\}
$$

as required.
Theorem 4.5. $\operatorname{gr}(\Gamma)=\left\{\begin{array}{cc}\infty & \text { if } n=4 \\ 3 & \text { if } n \geq 5 .\end{array}\right.$
Proof. Since $\Gamma\left(\mathcal{C}_{4}\right)$ is isomorphic to the following graph

$\operatorname{gr}\left(\Gamma\left(\bigodot_{4}\right)\right)=\infty$. For $n \geq 5$ if we consider α and β in $T^{*} \backslash\{\pi\}$ such that $k_{\alpha}=3, t_{\alpha}=2$, $k_{\beta}=2$ and $t_{\beta}=3$. Notice that $\alpha \neq \pi$ since $n \geq 5$. Then it follows from Lemma 4.1 that α and β are adjacent vertices in Γ. Thus $\pi-\alpha-\beta-\pi$ is a cycle of length 3 in Γ. Therefore, $\operatorname{gr}(\Gamma)=3$ since Γ is simple.

Theorem 4.6. For $n \geq 4$ and for $\alpha \in T^{*}=V(\Gamma)$ let $k=k_{\alpha}$ and $t=t_{\alpha}$. Then

$$
\operatorname{deg}_{\Gamma}(\alpha)= \begin{cases}\binom{n-t+k-1}{k-1}-1 & \text { if } k<t \\ \binom{n-t+k-1}{k-1}-2 & \text { if } k=t \text { or } k=t+1 \\ \binom{n-t+k-1}{k-1}-\binom{n-t+k-1}{k-t-2}-2 & \text { if } k>t+1\end{cases}
$$

Proof. For $n \geq 4$ and for $\alpha \in T^{*}$ let $k=k_{\alpha}$ and $t=t_{\alpha}$. For any $\beta \in T^{*}$ suppose that $\alpha \beta=\theta=\beta \alpha$. It follows from Lemma 4.1 that $t_{\beta} \leq k$ and $t \leq k_{\beta}$. Let

$$
A_{\alpha}=\left\{\beta \in T^{*} \mid t_{\beta} \leq k \text { and } t \leq k_{\beta}\right\}
$$

Thus if $\alpha^{2} \neq \theta$, then the degree of α is $\left|A_{\alpha}\right|$, and if $\alpha^{2}=\theta$, then the degree of α is $\left|A_{\alpha}\right|-1$.
Consider the elements of $D P_{n}$, the set of all the Dyck paths from $(0,0)$ to (n, n), which have the following form

$$
(0,0)-(1,0)-\cdots-(t, 0)-\cdots-(n, k-1)-(n, k)-\cdots-(n, n)
$$

and consider the function $f: \mathcal{C}_{n} \rightarrow D P_{n}$ defined in the proof of Proposition 2.1. Denote the set of all elements in $D P_{n}$ of the above form by $D P_{n, \alpha}$. For any $P \in D P_{n, \alpha}$ it is clear that $P f^{-1} \in T$ since $2 \leq t \leq n-1$ and $2 \leq k \leq n-1$. If $Q \in D P_{n, \alpha}$ is the path

$$
(0,0)-(1,0)-\cdots-(t, 0)-\cdots-(n, 0)-(n, 1)-\cdots-(n, k)-(n, k+1)-\cdots-(n, n)
$$

then $Q f^{-1}=\theta$, and so we have $\left|A_{\alpha}\right|=\left|D P_{n, \alpha}\right|-1$.
Suppose that $k \leq t+1$. Then the $N E$ lattice paths from $(t, 0)$ to $(n, k-1)$ do not cross the diagonal, and so $\left|D P_{n, \alpha}\right|=\binom{n-t+k-1}{k-1}$. If $k<t$ then $\alpha^{2} \neq \theta$, and so $d e g_{\Gamma}(\alpha)=$ $\binom{n-t+k-1}{k-1}-1$. If $k=t$ or $k=t+1$ then $\alpha^{2}=\theta$, and so $d e g_{\Gamma}(\alpha)=\binom{n-t+k-1}{k-1}-2$.

Suppose that $k>t+1$. Then $\alpha^{2}=\theta$ and some of the $N E$ lattice paths from $(t, 0)$ to $(n, k-1)$ do cross the diagonal. Let us find the number of $N E$ lattice paths which crossing the diagonal. If we use the reflection principle, then $(n, k-1)$ reflects to $(k-2, n+1)$ according to the line $y=x+1$. Thus the number of those paths are equal to the number of all $N E$ lattice paths from $(t, 0)$ to $(k-2, n+1)$ is $\binom{n-t+k-1}{k-t-2}$. Therefore, $d e g_{\Gamma}(\alpha)=$ $\binom{n-t+k-1}{k-1}-\binom{n-t+k-1}{k-t-2}-2$, as required.

For $n \geq 4$ if we consider π defined in (4.1) and simplicity of Γ, then it is clear that $\Delta(\Gamma)=\left|T^{*}\right|-1$. Moreover, if we consider α in $V(\Gamma)$ such that $t_{\alpha}=n-1$ and $k_{\alpha}=2$, then it follows from Theorem 4.6 that $\operatorname{deg}_{\Gamma}(\alpha)=1$. Thus we have the following immediate corollary.
Corollary 4.7. $\Delta(\Gamma)=\frac{3}{n+1}\binom{2 n-2}{n}-\frac{3}{n-3}\binom{2 n-4}{n}-2$ and $\delta(\Gamma)=1$ for $n \geq 4$.
Theorem 4.8. For $n \geq 4 \Gamma$ is a chordal, and so a perfect graph.
Proof. For $n \geq 4$ assume that there exists an induced subgraph of Γ which is an m-cycle with $m \geq 4$. Let $v_{1}-v_{2}-\cdots-v_{m}-v_{1}$ be an m-cycle in Γ with $m \geq 4$. Let $k_{i}=k_{v_{i}}$ and $t_{i}=t_{v_{i}}$ for each $1 \leq i \leq m$. Moreover, let $k=\min \left\{k_{i} \mid 1 \leq i \leq m\right\}$. Without losing generality assume that $k=k_{1}$. Then $t_{2} \leq k$ and $t_{m} \leq k$ since v_{1} is adjacent to both v_{2} and v_{m}. Since $t_{2} \leq k \leq k_{m}$ and $t_{m} \leq k \leq k_{2}$, it follows that v_{2} and v_{m} are adjacent vertices, which is a contradiction.

It is well-known that every chordal graph is a perfect graph (see, for example [7,16]).
Lemma 4.9. For $n \geq 2$ let $A=\left\{\alpha \in \mathcal{C}_{n}^{*} \mid k_{\alpha}=k\right.$ and $\left.t_{\alpha}=t\right\}$. Then

$$
|A|= \begin{cases}1 & \text { if } t=2 \\ \binom{n-k+t-3}{t-2} & \text { if } 2<t \leq k+1 \\ \binom{n-k+t-3}{t-2}-\binom{n-k+t-3}{t-k-2} & \text { if } t>k+1 .\end{cases}
$$

Proof. For $n \geq 2$ let $A=\left\{\alpha \in \mathcal{C}_{n}^{*} \mid k_{\alpha}=k\right.$ and $\left.t_{\alpha}=t\right\}$. Consider the elements of $D P_{n}$, the set of Dyck paths from $(0,0)$ to (n, n), which have the following form

$$
(0,0)-\cdots-(k, 0)-(k, 1)-\cdots-(n-1, t-1)-(n, t-1)-(n, t)-\cdots-(n, n)
$$

Denote the set of all elements in $D P_{n}$ of the above form by $D P_{n, k, t}$. Thus it follows from Proposition 2.1 and its proof that $|A|=\left|D P_{n, k, t}\right|$.

For $t=2$ there is only one Dyck path, namely

$$
(0,0)-\cdots-(k, 0)-(k, 1)-\cdots-(n-1,1)-(n, 1)-\cdots-(n, n)
$$

and so $|A|=1$.
Suppose that $2<t \leq k+1$. Then it is clear that all the $N E$ lattice paths from $(k, 1)$ to $(n-1, t-1)$ do not cross the diagonal, and so $|A|=\binom{n-k+t-3}{t-2}$.

Suppose that $t>k+1$. Then some of the $N E$ lattice paths from $(k, 1)$ to $(n-1, t-1)$ cross the diagonal. Let us find the number of $N E$ lattice paths which cross the diagonal. If we use the reflection principle, then $(n-1, t-1)$ reflects to $(t-2, n)$ according to the line $y=x+1$. Thus the number of those paths are equal to the number of all $N E$ lattice paths from $(k, 1)$ to $(t-2, n)$ which is $\binom{n-k+t-3}{t-k-2}$. Therefore, $|A|=\binom{n-k+t-3}{t-2}-\binom{n-k+t-3}{t-k-2}$.

Notice that in Lemma 4.9 for $n \geq 3$ if $2 \leq k \leq n-1$ and $2 \leq t \leq n-1$, then $A \subseteq T^{*}$. Let $A(n, k, t)=\left\{\alpha \in \mathcal{C}_{n}^{*} \mid k_{\alpha}=k\right.$ and $\left.t_{\alpha}=t\right\}$. Then we have a partition of T^{*}, namely

$$
T^{*}=\bigcup_{k=2}^{n-1}\left(\bigcup_{t=2}^{n-1} A(n, k, t)\right)
$$

for $n \geq 3$. Thus we have the following immediate corollary.
Corollary 4.10. For $n \geq 5$

$$
\begin{aligned}
& n-2+\sum_{r=0}^{n-4}\left(\sum_{k=2+r}^{n-1}\binom{n-k+r}{r+1}\right)+\sum_{s=1}^{n-4}\left(\sum_{k=2}^{s+1}\left(\binom{n-k+s}{s+1}-\binom{n-k+s}{s+1-k}\right)\right) \\
& =\frac{3}{n+1}\binom{2 n-2}{n}-\frac{3}{n-3}\binom{2 n-4}{n}-1
\end{aligned}
$$

Lemma 4.11. Let K be a complete subgraph of Γ and $V(K)=\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$. Let $k_{i}=k_{v_{i}}$ and $t_{i}=t_{v_{i}}$ for $1 \leq i \leq m$. Then there is at most one $1 \leq i \leq m$ such that $t_{i}>k_{i}$.

Proof. Assume that there are two distinct i and j such that $t_{i}>k_{i}$ and $t_{j}>k_{j}$. Without loss of generality suppose that $k_{i} \leq k_{j}$. Since v_{i} and v_{j} are adjacent vertices in K, we have $t_{j} \leq k_{i}$. Thus $t_{j} \leq k_{i} \leq k_{j}$, which is a contradiction.
Theorem 4.12. For $n \geq 4$

$$
\chi(\Gamma)=\omega(\Gamma)=\max \left\{\sum_{k=i}^{n-1} \sum_{t=2}^{i}|A(n, k, t)| \mid 2 \leq i \leq n-1\right\}
$$

Proof. Let $n \geq 4$ and K be a maximal complete subgraph of Γ with the vertices set $V(K)=\left\{v_{1}, \ldots, v_{m}\right\}$, and let $k_{i}=k_{v_{i}}, t_{i}=t_{v_{i}}$ for $1 \leq i \leq m$. From Lemma 4.11, since K is complete, without loss of generality either $t_{1}>k_{1}$ and $t_{i} \leq k_{i}$ for all $2 \leq i \leq m$ or $t_{i} \leq k_{i}$ for all $1 \leq i \leq m$. Notice that it is possible $t_{x}=t_{y}$ or $k_{x}=k_{y}$ for some $1 \leq x \neq y \leq m$.

Suppose that $t_{1}>k_{1}$ and $t_{i} \leq k_{i}$ for all $2 \leq i \leq m$. Let C be the set of all the different numbers among $t_{2}, t_{3}, \ldots, t_{m}$ and let D be the set of all the different numbers among $k_{2}, k_{3}, \ldots, k_{m}$. From Lemma 4.1, since $t_{i} \leq k_{1}$ and $t_{1} \leq k_{i}$ for every $2 \leq i \leq m$, $\min (D)-\max (C) \geq 1$. Let $\min (D)=p$ (notice that $p \geq 2$), and let Ω be the induced subgraph of Γ with vertex set $V(\Omega)=\left(V(K) \backslash\left\{v_{1}\right\}\right) \cup A(n, p, p)$. Then it is clear that Ω is a complete subgraph, and that $|V(\Omega)| \geq|V(K)|$. Moreover, it is also clear that $t_{v} \leq k_{v}$ for all v in Ω. Therefore, there exists at least one maximal complete subgraphs K of Γ such that $t_{v} \leq k_{v}$ for all v in K.

Let K be a maximal complete subgraph of Γ with the vertices set $V(K)=\left\{v_{1}, \ldots, v_{m}\right\}$, and let $k_{i}=k_{v_{i}}, t_{i}=t_{v_{i}}$ and $t_{i} \leq k_{i}$ for $1 \leq i \leq m$. For any $1 \leq i \leq m$ since K is a complete subgraph of $\Gamma, t_{i} \leq k_{j}$ for all $j \in\{1, \ldots, m\} \backslash\{i\}$, and so $t_{i} \leq k_{j}$ for all $1 \leq j \leq m$. Therefore, $\min (D) \geq \max (C)$ where C is the set of all the different numbers
among $t_{1}, t_{2}, \ldots, t_{m}$ and D is the set of all the different numbers among $k_{1}, k_{2}, \ldots, k_{m}$. Now assume that $\min (D) \neq \max (C)$. Let $\max (C)=q$, and let Ω be the induced subgraph of Γ with vertex set $V(\Omega)=V(K) \cup A(n, q, q)$. Then it is clear that Ω is a complete subgraph, and that $|V(\Omega)|>|V(K)|$ which is a contradiction. Thus $\min (D)=\max (C)=r$. From the maximality of the complete subgraph of Γ we deduce that $C=\{2,3, \ldots, r\}$ and $D=\{r, r+1, \ldots, n-1\}$. Thus,

$$
V(K)=\bigcup\{A(n, k, t) \mid k \in D \text { and } t \in C\},
$$

and so $|V(K)|=\sum_{k=r}^{n-1} \sum_{t=2}^{r}|A(n, k, t)|$. Therefore,

$$
\omega(\Gamma)=\max \left\{\sum_{k=i}^{n-1} \sum_{t=2}^{i}|A(n, k, t)| \mid 2 \leq i \leq n-1\right\}
$$

Since Γ is perfect graph, $\chi(\Gamma)=\omega(\Gamma)$, as required.
Example 4.13. If $\Gamma=\Gamma\left(\mathrm{C}_{6}\right)$ then $|V(\Gamma)|=61, \operatorname{diam}(\Gamma)=2, \operatorname{rad}(\Gamma)=1, \operatorname{gr}(\Gamma)=3$, $\gamma(\Gamma)=1, \Delta(\Gamma)=60, \delta(\Gamma)=1, \chi(\Gamma)=\omega(\Gamma)=9$. Moreover, $\operatorname{deg}_{\Gamma}(\alpha)=8$ where $\alpha=\left(\begin{array}{cccccc}1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 1 & 1 & 1 & 3 & 4\end{array}\right) \in V(\Gamma)$.

Acknowledgment. My sincere thanks are due to Prof. Dr. Hayrullah Ayk for his helpful suggestions and encouragement.

References

[1] D.F. Anderson and P.S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217 (2), 434-447, 1999.
[2] G. Ayık, H. Ayık and M. Koç, Combinatorial results for order-preserving and orderdecreasing transformations, Turkish J. Math. 35 (4), 617-625, 2011.
[3] I. Beck, Coloring of commutative rings, J. Algebra 116 (1), 208-226, 1988.
[4] K.C. Das, N. Akgüneş and A.S. Çevik, On a graph of monogenic semigroup, J. Inequal. Appl. 44, 2013.
[5] F. DeMeyer and L. DeMeyer, Zero divisor graphs of semigroups, J. Algebra 283 (1), 190-198, 2005.
[6] F. DeMeyer, T. McKenzie and K. Schneider, The zero-divisor graph of a commutative semigroup, Semigroup Forum 65 (2), 206-214, 2002.
[7] G.A. Dirac, On rigid circuit graphs, Abh. Math. Sem. Univ. Hamburg 25 (1-2), 71-76, 1961.
[8] W. Feller, An Introduction to Probability Theory and Its Applications Volume I, New York, John Wiley \& Sons Inc, 1957.
[9] O. Ganyushkin and V. Mazorchuk, Classical Finite Transformation Semigroups: An Introduction, Springer, 2009.
[10] P.M. Higgins, Combinatorial results for semigroups of order-preserving mappings, Math. Proc. Camb. Phil. Soc. 113 (2), 281-296, 1993.
[11] J.M. Howie, Fundamentals of Semigroup Theory, New York, NY, USA: Oxford University Press, 1995.
[12] A. Laradji and A. Umar, On certain finite semigroups of order-decreasing transformations I, Semigroup Forum, 69 (2), 184-200, 2004.
[13] S.G. Mohanty, Lattice Path Counting and Applications, Academic Press, New York, 1979.
[14] S.P. Redmond, The zero-divisor graph of a non-commutative ring, Int. J. Commut. Rings 1 (4), 203-211, 2002.
[15] R. Stanley, Enumerative Combinatorics, Volume 2, Cambridge University Press, 2001.
[16] K. Thulasiraman, S. Arumugam, A. Brandstädt, A. and T. Nishizeki, Handbook of Graph Theory, Combinatorial Optimization, and Algorithms, Chapman \& Hall/CRC Computer and Information Science Series. CRC Press, Boca Raton, 2015.
[17] K. Toker, On the zero-divisor graphs of finite free semilattices, Turkish J. Math 40 (4), 824-831, 2016.

[^0]: Email address: ktoker@harran.edu.tr
 Received: 11.03.2020; Accepted: 08.07.2020

