

RESEARCH ARTICLE

Zero-divisor graphs of Catalan monoid

Kemal Toker

Department of Mathematics, Faculty of Science, Harran University, Şanlıurfa, Turkey

Abstract

Let \mathcal{C}_n be the Catalan monoid on $X_n = \{1, \ldots, n\}$ under its natural order. In this paper, we describe the sets of left zero-divisors, right zero-divisors and two sided zero-divisors of \mathcal{C}_n ; and their numbers. For $n \geq 4$, we define an undirected graph $\Gamma(\mathcal{C}_n)$ associated with \mathcal{C}_n whose vertices are the two sided zero-divisors of \mathcal{C}_n excluding the zero element θ of \mathcal{C}_n with distinct two vertices α and β joined by an edge in case $\alpha\beta = \theta = \beta\alpha$. Then we first prove that $\Gamma(\mathcal{C}_n)$ is a connected graph, and then we find the diameter, radius, girth, domination number, clique number and chromatic numbers and the degrees of all vertices of $\Gamma(\mathcal{C}_n)$. Moreover, we prove that $\Gamma(\mathcal{C}_n)$ is a chordal graph, and so a perfect graph.

Mathematics Subject Classification (2020). 20M20, 97K30

Keywords. Catalan monoid, zero-divisor graph, perfect graph, clique number

1. Introduction

The zero-divisor graph was introduced by Beck on commutative rings in [3]. In Beck's definition zero element is a vertex in the graph too, later the standard definition of zerodivisor graphs on commutative rings was given by Anderson and Livingston in [1]. Let R be commutative ring, let Z(R) be the set of the zero-divisors of R. The zero-divisor graph of R is an undirected graph $\Gamma(R)$ with vertices $Z(R) \setminus \{0\}$, where distinct vertices x and y of $\Gamma(R)$ are adjacent if and only if xy = 0. Demeyer et. all have considered this definition for semigroups and they defined and found some basic properties of the zerodivisor graph of a commutative semigroup with zero in [5, 6]. In particular, they proved that the zero-divisor graph of a commutative semigroup with zero is connected. Since then, the zero-divisor graphs of some special classes of commutative semigroups with zero have been researched (see [4, 17]). For non-commutative rings, a directed zero-divisor graph and some undirected zero-divisor graphs were defined by Redmond in [14]. For a ring Rlet $Z_R(T)$ be the set of all two sided zero-divisor elements of R. Then Redmond defines an undirected zero-divisor graph $\Gamma(R)$ with vertices $Z_R(T) \setminus \{0\}$, where distinct vertices x and y are adjacent with a single edge if and only if xy = 0 = yx (see [14, Definition 3.4.]). If R is a non-commutative ring, then $\Gamma(R)$ need not to be connected (for an example see [14, Figure 9.]) and if R is a commutative ring then $\Gamma(R)$ coincide with standard zero-divisor graph of R in [14]. As Demeyer et. all, we can consider this definition for non-commutative semigroups which have zero.

Email address: ktoker@harran.edu.tr

Received: 11.03.2020; Accepted: 08.07.2020

Let $X_n = \{1, \ldots, n\}$ finite set with its natural order. Let T_n be the full transformation semigroup on X_n . We call a transformation $\alpha : X_n \to X_n$ order-preserving if $x \leq y$ implies $x\alpha \leq y\alpha$ for all $x, y \in X_n$, and order-decreasing if $x\alpha \leq x$ for all $x \in X_n$. Some properties of the semigroup \mathbb{C}_n , which consists of all order-preserving and order-decreasing transformations have been investigated over the last forty years (see, for example [2,10,12]). Moreover, \mathbb{C}_n is called Catalan monoid too. Since $1\alpha = 1$ for every $\alpha \in \mathbb{C}_n$, if we take and fix $\theta \in \mathbb{C}_n$ as the unique constant map, then $\theta\alpha = \theta = \alpha\theta$ for every $\alpha \in \mathbb{C}_n$, and so θ is the zero element of \mathbb{C}_n . Moreover, it is clear that \mathbb{C}_n is a non-commutative semigroup for $n \geq 3$.

For $n \geq 2$ let $\mathcal{C}_n^* = \mathcal{C}_n \setminus \{\theta\}$. Then we define the following sets

$$L = L(\mathcal{C}_n) = \{ \alpha \in \mathcal{C}_n \mid \alpha\beta = \theta \text{ for some } \beta \in \mathcal{C}_n^* \},\$$

$$R = R(\mathcal{C}_n) = \{ \alpha \in \mathcal{C}_n \mid \gamma\alpha = \theta \text{ for some } \gamma \in \mathcal{C}_n^* \} \text{ and}\$$

$$T = T(\mathcal{C}_n) = \{ \alpha \in \mathcal{C}_n \mid \alpha\beta = \theta = \gamma\alpha \text{ for some } \beta, \gamma \in \mathcal{C}_n^* \} = L \cap R$$

which are called the set of left zero-divisors, right zero-divisors and (two sided) zero-divisors of \mathcal{C}_n , respectively. It is known that the cardinality of \mathcal{C}_n is $\frac{1}{n+1}\binom{2n}{n}$ which is called *n*-th Catalan number (see, for example [10]). In this paper we find the left zero-divisors, right zero-divisors and zero-divisors of \mathcal{C}_n , and then we find their numbers.

For a semigroup S with zero 0 if $T(S) \setminus \{0\} \neq \emptyset$ where $T(S) = \{z \in S \mid zx = 0 = yz \text{ for } x, y \in S \setminus \{0\}\}$, then we similarly define the (undirected) zero-divisor graph $\Gamma(S)$ associated with S whose the set of vertices is $T(S) \setminus \{0\}$ with distinct two vertices joined by an edge in case xy = 0 = yx for some $x, y \in T(S) \setminus \{0\}$. Notice that $\theta \in T(\mathcal{C}_n)$ for all $n \geq 2$, but $T(\mathcal{C}_n) \setminus \{\theta\} \neq \emptyset$ if $n \geq 3$. Moreover, $\Gamma(\mathcal{C}_3)$ is a graph with exactly one vertex and no edge. In this paper, we prove that $\Gamma(\mathcal{C}_n)$ is a connected graph and then we find the diameter, radius, girth, domination number, clique and chromatic numbers and the degrees of all vertices of $\Gamma(\mathcal{C}_n)$ for $n \geq 4$. Moreover, we prove that $\Gamma(\mathcal{C}_n)$ is a chordal graph, and so a perfect graph for $n \geq 4$.

For semigroup terminology see [9, 11] and for graph theoretical terminology see [16].

2. Primaries

A lattice path L in \mathbb{Z}^d of lenght k with steps in S is a sequence v_0, v_1, \ldots, v_k in \mathbb{Z}^d such that each consecutive difference $v_i - v_{i-1}$ lies in S for every $i = 1, \ldots, k$. In the twodimensional space \mathbb{Z}^2 , let (x_1, y_1) and (x_2, y_2) be two points with $x_1 \leq x_2$ and $y_1 \leq y_2$. Then a North-East (NE) lattice path from (x_1, y_1) to (x_2, y_2) is a lattice path in \mathbb{Z}^2 with steps in $S = \{ (0, 1), (1, 0) \}$. (0, 1) steps are called North steps, and (1, 0) steps are called East steps. For $n \in \mathbb{Z}^+$ a Dyck path is a NE lattice path from (0, 0) to (n, n) that lies below but may touch the diagonal y = x (see, for example [13,15]). It is a well-known fact that the number of all the Dyck paths from (0, 0) to (n, n) is

$$C_n = \frac{1}{n+1} \binom{2n}{n},$$

the *n*-th Catalan number. (Andre's) reflection principle is a tool to prove this fact (see [8]). Moreover, Higgins proved that the cardinality of \mathcal{C}_n is equal to C_n in [10]. Thus there are bijections from \mathcal{C}_n to DP_n which is the set of Dyck paths from (0,0) to (n,n). Since bijections from \mathcal{C}_n to DP_n are useful throughout this paper, we state and prove this well-known fact with defining a bijection from \mathcal{C}_n to DP_n .

Proposition 2.1. Let DP_n be the set of Dyck paths from (0,0) to (n,n). Then there is a bijection from C_n to DP_n .

Proof. We define a function $f : \mathfrak{C}_n \to DP_n$ as follows: For the zero element θ , let $\theta f = P_{\theta}$ where

$$P_{\theta}: (0,0) - (1,0) - \dots - (n,0) - (n,1) - \dots - (n,n),$$

which is clearly a Dyck path. For any $\alpha \in C_n \setminus \{\theta\}$ and for any $i \in X_n$ let $h_i(\alpha)$ be the horizontal line from $(i-1, i\alpha - 1)$ to $(i, i\alpha - 1)$. For every $i \in X_n$, since $i\alpha \leq i$, $h_i(\alpha)$ does not cross the diagonal. Notice that if $i\alpha = (i+1)\alpha$ for any $1 \leq i \leq n-1$, then $h_i(\alpha)$ and $h_{i+1}(\alpha)$ are adjacent lines, and that if $i\alpha \neq (i+1)\alpha$ then $h_i(\alpha)$ lower than $h_{i+1}(\alpha)$. Since $\alpha \neq \theta$ there exists at least one $i \in X_{n-1}$ such that $h_i(\alpha)$ lower than $h_{i+1}(\alpha)$. Suppose that there exist k many lower horizontal lines, say $h_{i_1}(\alpha), \ldots, h_{i_k}(\alpha)$ with $i_1 < \cdots < i_k < n$. Notice that $i_1\alpha = 1$. Then let $\alpha f = P_\alpha$ where

$$P_{\alpha} : (0,0) - \dots - (i_{1}-1,0) - (i_{1},0) - (i_{1},1) - \dots - (i_{1},i_{2}\alpha - 1) - (i_{1}+1,i_{2}\alpha - 1) - \dots - (i_{2}-1,i_{2}\alpha - 1) - (i_{2},i_{2}\alpha - 1) - (i_{2},i_{2}\alpha) - \dots - (i_{2},i_{3}\alpha - 1) - (i_{2}+1,i_{3}\alpha - 1) - \dots - (i_{k-1},i_{k}\alpha - 1) - (i_{k-1}+1,i_{k}\alpha - 1) - \dots - (i_{k}-1,i_{k}\alpha - 1) - (i_{k},i_{k}\alpha - 1) - (i_{k},i_{k}\alpha) - \dots - (i_{k},n\alpha - 1) - (i_{k}+1,n\alpha - 1) - \dots - (n,n\alpha - 1) - (n,n\alpha) - \dots - (n,n),$$

which is clearly a Dyck path.

Let α and β be distinct two elements in \mathcal{C}_n . Then there exists at least one $2 \leq i \leq n$ such that $i\alpha \neq i\beta$, and so the horizontal lines $h_i(\alpha)$ and $h_i(\beta)$ are different. Thus f is injective.

For any $P \in DP_n$ there are *n* many horizontal lines of length 1 in *P*, say h_1, h_2, \ldots, h_n from left to right. Let y_1, y_2, \ldots, y_n be the ordinates of the horizontal lines, respectively. Notice that $y_1 \leq y_2 \leq \cdots \leq y_n$ and that $y_1 = 0, y_i \leq i-1$ for $2 \leq i \leq n$. Then we consider the transformation $\alpha : X_n \to X_n$ defined by $i\alpha = y_i + 1$ for each $i \in X_n$. Then it is clear that $\alpha \in C_n$ and $\alpha f = P$, and so *f* is onto. Therefore, *f* is a bijection, as required. \Box

For an example, let

$$\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 1 & 3 & 3 & 5 \end{pmatrix} \in \mathfrak{C}_5,$$

and let f be the function defined in the proof of Proposition 2.1. Then the horizontal lines are

$$h_1(\alpha) = (0,0) - (1,0), \quad h_2(\alpha) = (1,0) - (2,0), \quad h_3(\alpha) = (2,2) - (3,2),$$

 $h_4(\alpha) = (3,2) - (4,2), \quad h_5(\alpha) = (4,4) - (5,4).$

Moreover, the Dyck path associated with α is

$$\begin{aligned} \alpha f &: (0,0) - (1,0) - (2,0) - (2,1) - (2,2) - (3,2) - (4,2) - (4,3) \\ &- (4,4) - (5,4) - (5,5). \end{aligned}$$

3. Zero-divisors of \mathcal{C}_n

In this section, we find the left zero-divisors, right zero-divisors and two-sided zerodivisors of \mathcal{C}_n and their numbers.

Lemma 3.1. For $n \ge 2$, let L be the set of left zero-divisors and R be the set of right zero-divisors of \mathcal{C}_n . Then we have

$$L = \{ \alpha \in \mathfrak{C}_n \mid n\alpha < n \} \text{ and } R = \{ \alpha \in \mathfrak{C}_n \mid 2\alpha = 1 \}.$$

Proof. Let $n \geq 2$, and let $\alpha \in \mathcal{C}_n$ such that $n\alpha < n$. If we consider the transformation which defined by

$$i\beta = \begin{cases} 1 & i \le n\alpha \\ 2 & i > n\alpha \end{cases}$$

then it is clear that $\beta \in \mathfrak{C}_n^* = \mathfrak{C}_n \setminus \{\theta\}$ and $\alpha\beta = \theta$.

Conversely, let α be a left zero-divisor of \mathcal{C}_n . Then there exists $\gamma \in \mathcal{C}_n^*$ such that $\alpha \gamma = \theta$. If we assume that $n\alpha = n$, then we have

$$n\gamma = (n\alpha)\gamma = n\theta = 1,$$

and so $\gamma = \theta$, which is a contradiction. Therefore, the set of all the left-zero divisors of \mathcal{C}_n is L.

Let $\alpha \in \mathcal{C}_n$ such that $2\alpha = 1$. If we consider the transformation which defined by

$$i\lambda = \begin{cases} 1 & i=1\\ 2 & i\neq 1, \end{cases}$$

then it is clear that $\lambda \in \mathfrak{C}_n^* = \mathfrak{C}_n \setminus \{\theta\}$ and $\lambda \alpha = \theta$.

Conversely, let α be a right zero-divisor of \mathcal{C}_n . Then there exists $\mu \in \mathcal{C}_n^*$ such that $\mu \alpha = \theta$. If we assume that $2\alpha \neq 1$, then we have $2\alpha = 2$ and $i\alpha \geq 2$ for every $2 \leq i \leq n$. Since the equation $(i\mu)\alpha = i\theta = 1$, we must have $i\mu = 1$ for every $1 \leq i \leq n$, and so $\mu = \theta$, which is a contradiction. Therefore, the set of all the right-zero divisors of \mathcal{C}_n is R. \Box

Lemma 3.2. For $n \ge 2$ let L be the set of left zero-divisors and R be the set of right zero-divisors of \mathfrak{C}_n . Then we have

$$|L| = |R| = \frac{3}{n+1} \binom{2n-2}{n}.$$

Proof. For $n \geq 2$ let $A = \{ \alpha \in \mathbb{C}_n \mid n\alpha = n \}$. If we consider the function $f : A \to \mathbb{C}_{n-1}$ defined by $\alpha f = \alpha_{|_{X_{n-1}}}$ for every $\alpha \in A$, then it is clear that f is a bijection, and so $|A| = |\mathbb{C}_{n-1}|$. Then it follows from Lemma 3.1 that $L = \mathbb{C}_n \setminus A$, and so

$$|L| = \frac{1}{n+1} \binom{2n}{n} - \frac{1}{n} \binom{2n-2}{n-1} = \frac{3}{n+1} \binom{2n-2}{n}.$$

Let $B = \{ \alpha \in \mathbb{C}_n \mid 2\alpha = 2 \}$. For every $\alpha \in B$ if we consider the transformation $\hat{\alpha} : X_{n-1} \to X_{n-1}$ defined by $i\hat{\alpha} = (i+1)\alpha - 1$, then it is clear that $\hat{\alpha} \in \mathbb{C}_{n-1}$. Moreover, if we consider the function $g : B \to \mathbb{C}_{n-1}$ defined by $\alpha g = \hat{\alpha}$ for every $\alpha \in B$, then it is also clear that g is a bijection, and so $|B| = |\mathbb{C}_{n-1}|$. Similarly, it follows from Lemma 3.1 that $|R| = \frac{3}{n+1} {\binom{2n-2}{n}}$, as required.

If T is the set of all two sided zero-divisors of \mathcal{C}_n , then it is clear that

$$T = L \cap R = \{ \alpha \in \mathfrak{C}_n \mid 2\alpha = 1 \text{ and } n\alpha < n \}.$$

Thus, if n = 2 then $T = \{\theta\}$, and if $n \ge 3$ then $T \setminus \{\theta\} \neq \emptyset$.

Lemma 3.3. For $n \ge 3$ and T be the two sided zero-divisors set of C_n . If n = 3 then |T| = 2 and if $n \ge 4$ then

$$|T| = \frac{3}{n+1} \binom{2n-2}{n} - \frac{3}{n-3} \binom{2n-4}{n}$$

Proof. For n = 3 it is clear that |T| = 2. For $n \ge 4$ let $A = \{\alpha \in \mathbb{C}_n \mid n\alpha = n\}$ and $B = \{\alpha \in \mathbb{C}_n \mid 2\alpha = 2\}$. Then since $T = L \cap R$, it follows from Lemma 3.1 that

$$T = (\mathcal{C}_n \setminus A) \cap (\mathcal{C}_n \setminus B) = \mathcal{C}_n \setminus (A \cup B).$$

Since $A \cap B = \{ \alpha \in \mathbb{C}_n \mid 2\alpha = 2 \text{ and } n\alpha = n \}$, we similarly define a bijection from $A \cap B$ to \mathbb{C}_{n-2} so that the cardinality of $A \cap B$ is Catalan number C_{n-2} . Therefore,

$$|T| = |\mathcal{C}_n| - |A| - |B| + |A \cap B| = C_n - 2C_{n-1} + C_{n-2}$$
$$= \frac{3}{n+1} \binom{2n-2}{n} - \frac{3}{n-3} \binom{2n-4}{n},$$

as required.

4. Zero-divisor graph of \mathcal{C}_n

Let $\Gamma = (V(\Gamma), E(\Gamma))$ be an undirected graph, $V(\Gamma)$ denotes the vertex set of Γ and $E(\Gamma)$ denotes the edge set of Γ . If Γ contains no loops or multiple edges then Γ is called a simple graph. In this section we shall assume that Γ is a simple graph. For distinct two vertices $u, v \in V(\Gamma)$ if there exist distinct vertices $v_0, v_1, \ldots, v_n \in V(\Gamma)$ such that $v_0 = u$, $v_n = v$ and $v_{i-1} - v_i$ is an edge in $E(\Gamma)$ for each $1 \leq i \leq n$, then $u - v_1 - \cdots - v_{n-1} - v$ is called a path from u to v of length n in Γ . For every distinct two vertices $u, v \in V(\Gamma)$ if there exits a path from u to v, then Γ is called a connected graph. Let $u, v \in V(\Gamma)$ and let u, v be different vertices, then the length of the shortest path between u and v in Γ is denoted by $d_{\Gamma}(u, v)$. The eccentricity of a vertex v in a connected simple graph Γ is denoted by ecc(v) and

$$\operatorname{ecc}(v) = \max\{d_{\Gamma}(u, v) \mid u \in V(\Gamma)\}.$$

The diameter diam(Γ), the radius rad(Γ) and the central vertex set $C(\Gamma)$ of Γ defined by

$$\begin{aligned} \operatorname{diam}(\Gamma) &= \max\{\operatorname{ecc}(v) \mid v \in V(\Gamma)\},\\ \operatorname{rad}(\Gamma) &= \min\{\operatorname{ecc}(v) \mid v \in V(\Gamma)\} \text{ and}\\ C(\Gamma) &= \{v \in V(\Gamma) \mid \operatorname{ecc}(v) = \operatorname{rad}(\Gamma)\}, \end{aligned}$$

respectively. The degree of a vertex $v \in V(\Gamma)$ is denoted by $\deg_{\Gamma}(v)$ and it is the number of adjacent vertices to v in Γ . Moreover $\Delta(\Gamma)$ shows that the maximum degree and $\delta(\Gamma)$ shows that minimum degree among all the degrees in Γ .

Let D be a non-empty subset of the vertex set $V(\Gamma)$ of Γ . For each vertices of Γ , if the vertex in D or the vertex is adjacent to D then D is called a dominating set for Γ . The domination number of Γ is

 $\min\{|D| \mid D \text{ is a dominating set of } \Gamma\}$

and this number is denoted by $\gamma(\Gamma)$. In Γ the length of shortest cycle is called girth of Γ and it is denoted by $\operatorname{gr}(\Gamma)$, moreover if Γ does not contain any cycles, then its girth is defined to be infinity.

Let C be the non-empty subset of $V(\Gamma)$, if u and v are adjacent vertices in Γ for every $u, v \in C$, then C is called a clique. Number of all the vertices in any maximal clique of Γ is called clique number of Γ and it is denoted by $\omega(\Gamma)$. If we colour all the vertices in Γ with the rule of no two adjacent vertices have the same colour, then the minimum number of colours needed to colour of Γ is called chromatic number of Γ , it is denoted by $\chi(\Gamma)$.

Let $V' \subseteq V(\Gamma)$. The (vertex) induced subgraph $\Gamma' = (V', E')$ is a subgraph of Γ and its vertex set is V', moreover its edge set consists of all of the edges in $E(\Gamma)$ that have both endpoints in V'. If $\chi(\Lambda) = \omega(\Lambda)$ for each induced subgraph Λ of Γ , in this case Γ is called a perfect graph. A chordal graph is a simple graph, it does not contain an induced cycle of length 4 or more. Thus in chordal graphs every induced cycle has exactly three vertices.

In this section we prove that $\Gamma(\mathcal{C}_n)$ is a connected graph and then we find the diameter, radius, girth, domination number, clique number and chromatic numbers and the degrees of all vertices of $\Gamma(\mathcal{C}_n)$ for $n \ge 4$. Moreover, we prove that $\Gamma(\mathcal{C}_n)$ is a chordal graph, and so a perfect graph for $n \ge 4$.

For $n \ge 2$ and $\alpha \in \mathcal{C}_n^*$, let k_α be the element of X_{n-1} such that $k_\alpha \alpha = 1$ and $(k_\alpha + 1)\alpha \ne 1$, and moreover, let $t_\alpha = n\alpha$. For $n \ge 3$ and for $\alpha \in T^* = T \setminus \{\theta\}$ observe that $2 \le k_\alpha, t_\alpha \le n-1$.

Lemma 4.1. Let $n \ge 3$ and $\alpha, \beta \in T^*$. Then $\alpha\beta = \theta$ if and only if $t_\alpha \le k_\beta$. In particular, $\alpha^2 = \theta$ if and only if $t_\alpha \le k_\alpha$.

Proof. (\Rightarrow) For $n \geq 3$ and for $\alpha, \beta \in T^*$ let $\alpha\beta = \theta$. Assume that $t_\alpha > k_\beta$. Then $1 = n(\alpha\beta) = (n\alpha)\beta = t_\alpha\beta \geq (k_\beta + 1)\beta \geq 2$, which is a contradiction. Thus $t_\alpha \leq k_\beta$.

K. Toker

(\Leftarrow) For $n \ge 3$ and for $\alpha, \beta \in T^*$ let $t_{\alpha} \le k_{\beta}$. Since $n(\alpha\beta) = (n\alpha)\beta = t_{\alpha}\beta = 1$, $\alpha\beta = \theta$, as required.

As a result, for $n \geq 3$ and for $\alpha, \beta \in T^*$, $\alpha\beta = \theta = \beta\alpha$ if and only if $t_{\alpha} \leq k_{\beta}$ and $t_{\beta} \leq k_{\alpha}$.

Since $\Gamma(\mathcal{C}_3)$ is a graph which has exactly only one vertex and no edge, from now on we only consider the case $n \geq 4$. Moreover, for convenience, we use Γ instead of $\Gamma(\mathcal{C}_n)$. From Lemma 3.3 we have the following immediate corollary.

Corollary 4.2. For $n \ge 4$, $|V(\Gamma)| = \frac{3}{n+1} \binom{2n-2}{n} - \frac{3}{n-3} \binom{2n-4}{n} - 1$.

For $n \ge 4$ we fix the following zero-divisor of \mathcal{C}_n :

$$\pi = \begin{pmatrix} 1 & 2 & \cdots & n-1 & n \\ 1 & 1 & \cdots & 1 & 2 \end{pmatrix}.$$
 (4.1)

Lemma 4.3. Γ is a connected graph for each $n \ge 4$. In fact $\gamma(\Gamma) = 1$ for $n \ge 4$.

Proof. For $n \ge 4$ consider π defined in (4.1). For each $\alpha \in T^* \setminus \{\pi\}$ it follows from Lemma 4.1 that $\alpha \pi = \theta = \pi \alpha$ since $t_{\alpha} \le n - 1$ and $2 \le k_{\alpha}$. Thus every element in $T^* \setminus \{\pi\}$ is adjacent to π in Γ , so Γ is connected and $\gamma(\Gamma) = 1$.

Lemma 4.4. diam $(\Gamma) = 2$ and rad $(\Gamma) = 1$ for $n \ge 4$. Moreover, $C(\Gamma) = \{\pi\}$.

Proof. For $n \ge 4$ if we consider π defined in (4.1), then it is clear that diam(Γ) ≤ 2 and rad(Γ) = 1. To show that diam(Γ) = 2 consider two elements α and β in $T^* \setminus \{\pi\}$ such that $2 \le k_{\alpha} \le n-2$ and $t_{\beta} = n-1$. Now it follows from Lemma 4.1 that $\beta \alpha \ne \theta$, and so α and β are not adjacent vertices in Γ . Thus $ecc(\alpha) = 2$, and so diam(Γ) = 2.

In addition consider two elements α and β in $T^* \setminus \{\pi\}$ such that $3 \leq t_{\alpha} \leq n-1$ and $k_{\beta} = 2$. Similarly, from Lemma 4.1, $\alpha \beta \neq \theta$, and so α and β are not adjacent vertices in Γ . Thus $\text{ecc}(\alpha) = 2$, and so

$$C(\Gamma) = \{ \alpha \in T^* \mid k_{\alpha} = n - 1 \text{ and } t_{\alpha} = 2 \} = \{ \pi \}$$

as required.

Theorem 4.5. $gr(\Gamma) = \begin{cases} \infty & \text{if } n = 4\\ 3 & \text{if } n \ge 5. \end{cases}$

Proof. Since $\Gamma(\mathcal{C}_4)$ is isomorphic to the following graph

 $\operatorname{gr}(\Gamma(\mathcal{C}_4)) = \infty$. For $n \geq 5$ if we consider α and β in $T^* \setminus \{\pi\}$ such that $k_{\alpha} = 3$, $t_{\alpha} = 2$, $k_{\beta} = 2$ and $t_{\beta} = 3$. Notice that $\alpha \neq \pi$ since $n \geq 5$. Then it follows from Lemma 4.1 that α and β are adjacent vertices in Γ . Thus $\pi - \alpha - \beta - \pi$ is a cycle of length 3 in Γ . Therefore, $gr(\Gamma) = 3$ since Γ is simple. \Box

Theorem 4.6. For $n \ge 4$ and for $\alpha \in T^* = V(\Gamma)$ let $k = k_\alpha$ and $t = t_\alpha$. Then

$$deg_{\Gamma}(\alpha) = \begin{cases} \binom{n-t+k-1}{k-1} - 1 & \text{if } k < t\\ \binom{n-t+k-1}{k-1} - 2 & \text{if } k = t \text{ or } k = t+1\\ \binom{n-t+k-1}{k-1} - \binom{n-t+k-1}{k-t-2} - 2 & \text{if } k > t+1. \end{cases}$$

392

Proof. For $n \ge 4$ and for $\alpha \in T^*$ let $k = k_\alpha$ and $t = t_\alpha$. For any $\beta \in T^*$ suppose that $\alpha\beta = \theta = \beta\alpha$. It follows from Lemma 4.1 that $t_\beta \le k$ and $t \le k_\beta$. Let

$$A_{\alpha} = \{ \beta \in T^* \mid t_{\beta} \le k \text{ and } t \le k_{\beta} \}.$$

Thus if $\alpha^2 \neq \theta$, then the degree of α is $|A_{\alpha}|$, and if $\alpha^2 = \theta$, then the degree of α is $|A_{\alpha}| - 1$.

Consider the elements of DP_n , the set of all the Dyck paths from (0,0) to (n,n), which have the following form

$$(0,0) - (1,0) - \dots - (t,0) - \dots - (n,k-1) - (n,k) - \dots - (n,n)$$

and consider the function $f: \mathcal{C}_n \to DP_n$ defined in the proof of Proposition 2.1. Denote the set of all elements in DP_n of the above form by $DP_{n,\alpha}$. For any $P \in DP_{n,\alpha}$ it is clear that $Pf^{-1} \in T$ since $2 \leq t \leq n-1$ and $2 \leq k \leq n-1$. If $Q \in DP_{n,\alpha}$ is the path

$$(0,0) - (1,0) - \dots - (t,0) - \dots - (n,0) - (n,1) - \dots - (n,k) - (n,k+1) - \dots - (n,n)$$

then $Qf^{-1} = \theta$, and so we have $|A_{\alpha}| = |DP_{n,\alpha}| - 1$.

Suppose that $k \leq t+1$. Then the *NE* lattice paths from (t,0) to (n, k-1) do not cross the diagonal, and so $|DP_{n,\alpha}| = \binom{n-t+k-1}{k-1}$. If k < t then $\alpha^2 \neq \theta$, and so $deg_{\Gamma}(\alpha) = \binom{n-t+k-1}{k-1} - 1$. If k = t or k = t+1 then $\alpha^2 = \theta$, and so $deg_{\Gamma}(\alpha) = \binom{n-t+k-1}{k-1} - 2$.

Suppose that k > t + 1. Then $\alpha^2 = \theta$ and some of the *NE* lattice paths from (t, 0) to (n, k-1) do cross the diagonal. Let us find the number of *NE* lattice paths which crossing the diagonal. If we use the reflection principle, then (n, k-1) reflects to (k-2, n+1) according to the line y = x + 1. Thus the number of those paths are equal to the number of all *NE* lattice paths from (t, 0) to (k-2, n+1) is $\binom{n-t+k-1}{k-t-2}$. Therefore, $deg_{\Gamma}(\alpha) = \binom{n-t+k-1}{k-1} - \binom{n-t+k-1}{k-t-2} - 2$, as required.

For $n \geq 4$ if we consider π defined in (4.1) and simplicity of Γ , then it is clear that $\Delta(\Gamma) = |T^*| - 1$. Moreover, if we consider α in $V(\Gamma)$ such that $t_{\alpha} = n - 1$ and $k_{\alpha} = 2$, then it follows from Theorem 4.6 that $deg_{\Gamma}(\alpha) = 1$. Thus we have the following immediate corollary.

Corollary 4.7.
$$\Delta(\Gamma) = \frac{3}{n+1} \binom{2n-2}{n} - \frac{3}{n-3} \binom{2n-4}{n} - 2$$
 and $\delta(\Gamma) = 1$ for $n \ge 4$.

Theorem 4.8. For $n \ge 4 \Gamma$ is a chordal, and so a perfect graph.

Proof. For $n \ge 4$ assume that there exists an induced subgraph of Γ which is an *m*-cycle with $m \ge 4$. Let $v_1 - v_2 - \cdots - v_m - v_1$ be an *m*-cycle in Γ with $m \ge 4$. Let $k_i = k_{v_i}$ and $t_i = t_{v_i}$ for each $1 \le i \le m$. Moreover, let $k = \min\{k_i \mid 1 \le i \le m\}$. Without losing generality assume that $k = k_1$. Then $t_2 \le k$ and $t_m \le k$ since v_1 is adjacent to both v_2 and v_m . Since $t_2 \le k \le k_m$ and $t_m \le k \le k_2$, it follows that v_2 and v_m are adjacent vertices, which is a contradiction.

It is well-known that every chordal graph is a perfect graph (see, for example [7,16]). \Box

Lemma 4.9. For $n \ge 2$ let $A = \{ \alpha \in \mathfrak{C}_n^* \mid k_\alpha = k \text{ and } t_\alpha = t \}$. Then

$$|A| = \begin{cases} 1 & \text{if } t = 2\\ \binom{n-k+t-3}{t-2} & \text{if } 2 < t \le k+1\\ \binom{n-k+t-3}{t-2} - \binom{n-k+t-3}{t-k-2} & \text{if } t > k+1. \end{cases}$$

Proof. For $n \ge 2$ let $A = \{ \alpha \in \mathbb{C}_n^* \mid k_\alpha = k \text{ and } t_\alpha = t \}$. Consider the elements of DP_n , the set of Dyck paths from (0,0) to (n,n), which have the following form

$$(0,0) - \dots - (k,0) - (k,1) - \dots - (n-1,t-1) - (n,t-1) - (n,t) - \dots - (n,n).$$

Denote the set of all elements in DP_n of the above form by $DP_{n,k,t}$. Thus it follows from Proposition 2.1 and its proof that $|A| = |DP_{n,k,t}|$.

For t = 2 there is only one Dyck path, namely

$$(0,0) - \dots - (k,0) - (k,1) - \dots - (n-1,1) - (n,1) - \dots - (n,n),$$

and so |A| = 1.

Suppose that $2 < t \le k+1$. Then it is clear that all the *NE* lattice paths from (k, 1) to (n-1, t-1) do not cross the diagonal, and so $|A| = \binom{n-k+t-3}{t-2}$.

Suppose that t > k + 1. Then some of the *NE* lattice paths from (k, 1) to (n - 1, t - 1) cross the diagonal. Let us find the number of *NE* lattice paths which cross the diagonal. If we use the reflection principle, then (n - 1, t - 1) reflects to (t - 2, n) according to the line y = x + 1. Thus the number of those paths are equal to the number of all *NE* lattice paths from (k, 1) to (t - 2, n) which is $\binom{n-k+t-3}{t-k-2}$. Therefore, $|A| = \binom{n-k+t-3}{t-2} - \binom{n-k+t-3}{t-k-2}$.

Notice that in Lemma 4.9 for $n \ge 3$ if $2 \le k \le n-1$ and $2 \le t \le n-1$, then $A \subseteq T^*$. Let $A(n,k,t) = \{\alpha \in \mathbb{C}_n^* \mid k_\alpha = k \text{ and } t_\alpha = t\}$. Then we have a partition of T^* , namely

$$T^* = \bigcup_{k=2}^{n-1} \Big(\bigcup_{t=2}^{n-1} A(n,k,t)\Big)$$

for $n \geq 3$. Thus we have the following immediate corollary.

Corollary 4.10. For $n \ge 5$

$$\begin{split} n - 2 + \sum_{r=0}^{n-4} \Big(\sum_{k=2+r}^{n-1} \binom{n-k+r}{r+1} \Big) + \sum_{s=1}^{n-4} \Big(\sum_{k=2}^{s+1} \left(\binom{n-k+s}{s+1} - \binom{n-k+s}{s+1-k} \right) \Big) \\ = \frac{3}{n+1} \binom{2n-2}{n} - \frac{3}{n-3} \binom{2n-4}{n} - 1. \end{split}$$

Lemma 4.11. Let K be a complete subgraph of Γ and $V(K) = \{v_1, v_2, \ldots, v_m\}$. Let $k_i = k_{v_i}$ and $t_i = t_{v_i}$ for $1 \le i \le m$. Then there is at most one $1 \le i \le m$ such that $t_i > k_i$.

Proof. Assume that there are two distinct i and j such that $t_i > k_i$ and $t_j > k_j$. Without loss of generality suppose that $k_i \leq k_j$. Since v_i and v_j are adjacent vertices in K, we have $t_j \leq k_i$. Thus $t_j \leq k_i \leq k_j$, which is a contradiction.

Theorem 4.12. For $n \ge 4$

$$\chi(\Gamma) = \omega(\Gamma) = \max \Big\{ \sum_{k=i}^{n-1} \sum_{t=2}^{i} |A(n,k,t)| \mid 2 \le i \le n-1 \Big\}.$$

Proof. Let $n \ge 4$ and K be a maximal complete subgraph of Γ with the vertices set $V(K) = \{v_1, \ldots, v_m\}$, and let $k_i = k_{v_i}$, $t_i = t_{v_i}$ for $1 \le i \le m$. From Lemma 4.11, since K is complete, without loss of generality either $t_1 > k_1$ and $t_i \le k_i$ for all $2 \le i \le m$ or $t_i \le k_i$ for all $1 \le i \le m$. Notice that it is possible $t_x = t_y$ or $k_x = k_y$ for some $1 \le x \ne y \le m$. Suppose that $t_1 > k_1$ and $t_i \le k_i$ for all $2 \le i \le m$. Let C be the set of all the

Suppose that $t_1 > k_1$ and $t_i \le k_i$ for all $2 \le i \le m$. Let C be the set of all the different numbers among t_2, t_3, \ldots, t_m and let D be the set of all the different numbers among k_2, k_3, \ldots, k_m . From Lemma 4.1, since $t_i \le k_1$ and $t_1 \le k_i$ for every $2 \le i \le m$, $\min(D) - \max(C) \ge 1$. Let $\min(D) = p$ (notice that $p \ge 2$), and let Ω be the induced subgraph of Γ with vertex set $V(\Omega) = (V(K) \setminus \{v_1\}) \cup A(n, p, p)$. Then it is clear that Ω is a complete subgraph, and that $|V(\Omega)| \ge |V(K)|$. Moreover, it is also clear that $t_v \le k_v$ for all v in Ω . Therefore, there exists at least one maximal complete subgraphs K of Γ such that $t_v \le k_v$ for all v in K.

Let K be a maximal complete subgraph of Γ with the vertices set $V(K) = \{v_1, \ldots, v_m\}$, and let $k_i = k_{v_i}$, $t_i = t_{v_i}$ and $t_i \leq k_i$ for $1 \leq i \leq m$. For any $1 \leq i \leq m$ since K is a complete subgraph of Γ , $t_i \leq k_j$ for all $j \in \{1, \ldots, m\} \setminus \{i\}$, and so $t_i \leq k_j$ for all $1 \leq j \leq m$. Therefore, $\min(D) \geq \max(C)$ where C is the set of all the different numbers among t_1, t_2, \ldots, t_m and D is the set of all the different numbers among k_1, k_2, \ldots, k_m . Now assume that $\min(D) \neq \max(C)$. Let $\max(C) = q$, and let Ω be the induced subgraph of Γ with vertex set $V(\Omega) = V(K) \cup A(n, q, q)$. Then it is clear that Ω is a complete subgraph, and that $|V(\Omega)| > |V(K)|$ which is a contradiction. Thus $\min(D) = \max(C) = r$. From the maximality of the complete subgraph of Γ we deduce that $C = \{2, 3, \ldots, r\}$ and $D = \{r, r + 1, \ldots, n - 1\}$. Thus,

$$V(K) = \bigcup \{ A(n,k,t) \mid k \in D \text{ and } t \in C \},\$$

and so $|V(K)| = \sum_{k=r}^{n-1} \sum_{t=2}^{r} |A(n,k,t)|$. Therefore,

$$\omega(\Gamma) = \max\Big\{\sum_{k=i}^{n-1} \sum_{t=2}^{i} |A(n,k,t)| \mid 2 \le i \le n-1\Big\}.$$

Since Γ is perfect graph, $\chi(\Gamma) = \omega(\Gamma)$, as required.

Example 4.13. If $\Gamma = \Gamma(\mathcal{C}_6)$ then $|V(\Gamma)| = 61$, $diam(\Gamma) = 2$, $rad(\Gamma) = 1$, $gr(\Gamma) = 3$, $\gamma(\Gamma) = 1$, $\Delta(\Gamma) = 60$, $\delta(\Gamma) = 1$, $\chi(\Gamma) = \omega(\Gamma) = 9$. Moreover, $deg_{\Gamma}(\alpha) = 8$ where $\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 1 & 1 & 1 & 3 & 4 \end{pmatrix} \in V(\Gamma)$.

Acknowledgment. My sincere thanks are due to Prof. Dr. Hayrullah Ayık for his helpful suggestions and encouragement.

References

- D.F. Anderson and P.S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217 (2), 434-447, 1999.
- [2] G. Ayık, H. Ayık and M. Koç, Combinatorial results for order-preserving and orderdecreasing transformations, Turkish J. Math. 35 (4), 617-625, 2011.
- [3] I. Beck, Coloring of commutative rings, J. Algebra **116** (1), 208-226, 1988.
- [4] K.C. Das, N. Akgüneş and A.S. Çevik, On a graph of monogenic semigroup, J. Inequal. Appl. 44, 2013.
- [5] F. DeMeyer and L. DeMeyer, Zero divisor graphs of semigroups, J. Algebra 283 (1), 190-198, 2005.
- [6] F. DeMeyer, T. McKenzie and K. Schneider, *The zero-divisor graph of a commutative semigroup*, Semigroup Forum **65** (2), 206-214, 2002.
- [7] G.A. Dirac, On rigid circuit graphs, Abh. Math. Sem. Univ. Hamburg 25 (1-2), 71-76, 1961.
- [8] W. Feller, An Introduction to Probability Theory and Its Applications Volume I, New York, John Wiley & Sons Inc, 1957.
- [9] O. Ganyushkin and V. Mazorchuk, Classical Finite Transformation Semigroups: An Introduction, Springer, 2009.
- [10] P.M. Higgins, Combinatorial results for semigroups of order-preserving mappings, Math. Proc. Camb. Phil. Soc. 113 (2), 281-296, 1993.
- [11] J.M. Howie, Fundamentals of Semigroup Theory, New York, NY, USA: Oxford University Press, 1995.
- [12] A. Laradji and A. Umar, On certain finite semigroups of order-decreasing transformations I, Semigroup Forum, 69 (2), 184-200, 2004.
- [13] S.G. Mohanty, Lattice Path Counting and Applications, Academic Press, New York, 1979.
- [14] S.P. Redmond, The zero-divisor graph of a non-commutative ring, Int. J. Commut. Rings 1 (4), 203-211, 2002.
- [15] R. Stanley, *Enumerative Combinatorics*, Volume 2, Cambridge University Press, 2001.

$K. \ Toker$

- [16] K. Thulasiraman, S. Arumugam, A. Brandstädt, A. and T. Nishizeki, Handbook of Graph Theory, Combinatorial Optimization, and Algorithms, Chapman & Hall/CRC Computer and Information Science Series. CRC Press, Boca Raton, 2015.
- [17] K. Toker, On the zero-divisor graphs of finite free semilattices, Turkish J. Math 40 (4), 824-831, 2016.