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The study is devoted to analytic investigation of propagation of longitudinal
transient waves in laminated elastic composite half-space. The problem is solved
by using Laplace integral transform method. The recurrence relation between the
powers of. reflection coefficients for neighbouring layers are obtained. This
makes easy to find the inverse Laplace transforms. The solutions obtained are
analysed for finite value of time. The solution for periodically layered half-spase
is obtained as particular case.

1. INTRODUCTION

Dynamics of elastic solids has important application in seismology and in many branches of
tecnology. Moreower, it is well known that wave propagation is a powerful method of
investigation in determining physical and mechanical propertics of material systems.
Longitudinal and transversal waves propagating in the materials, is sensitive to the elastic
properties of the material [1-12]. Wave propagation in laminated composite materials is very
important and very difficult [2-12]. A new effective analytic method has been proposed in [3]
to solve the transient wave problems in laminated elastic composite with any non-
proportional hereditary proreties of components. Propagation of SH waves through faminated
composite materials was studed in [12] by using the transfer matrix method.

The paper is devoted to analytic investigation of propagation of longitudinal transient waves
in laminated elastic composite half-space consisting of the homogeneous isotropic layers
Iying on the homogeneous and isotropic elastic half-space. The problem is solved by using
Laplace integral transform method. The recurrence relation between the powers of reflection
coefficients depending on the parameter of the Laplace transform for neighbouring layers are
obtained. This makes easy to find the inverse Laplace transforms. These are analysed for
finite values of time. The solution for periodically layered half-spase is obtained as particular
case.

2. FORMULATION OF THE PROBLEM

The work is devoted to studying one-dimensional plane waves in laminated half-space with
simpliest structure consisting of the homogeneous isotropic layers with plane-paralell bounds,
cccupying the domain

=1 "

H,,=>h<x<yh=H, (m=12,.,N), h=H,=0 (1)
k=0 k=0
. . . . H,<x<w
and lying on the homogeneous and isotropic elastic half-space v

(H e = Oy = OO) . Each layer of m medium and half-space is caracterized with its density
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and elastic modulus p,, 4., 1, (m =1,2,...N +l) and its state is defined with the field of
small elastic displacements u, (x,t) satistying the equation of the motion

2 2
6 um . CZ a um H
612 “Fm e 2 m=1

where ¢, = ,I(/’.,m+2;1m)/ P, 1is the velomty of longitudinal waves. At instant /=0 the

media are in their nataral nonperturbed state. It is required to construct the solution of
equation (2) in each domain of m medium satisfying the initial conditions
o,
. =0, —2=0 =0, H
ot

1

<x<H

m*

(>0 2)

<x<H, (3)

and the boundary conditions expressing the continuity ofidisplacement and equality of stress
across the bounds x =,

um = umH E Jm' = O-m+1 k] X = Hm > t 2 0 (4)
and the given condition on the exterior bound of medium
o, (0,0)=—f(1), £>0. (5)

Besides, the conditions indicated there must sayisfy the boundness of the solution u,,, (x,f)

for x —o0. Here o, (x,¢)=(4, +2u, ) du

" m

/&x is normal stresses.

Note the problem of obtaining the displacement fields u,, (x,t) is correct, i.e. there is a
unique solution which continuously depends on the date.
We solve problem (1.1)-(1.4) using the Laplace integral method. Removing the

non-difficult procedures, we write the final solutions in the Laplace transform (here the bar
above the function denotes its Laplace transform with the parameter p)

b 7 - -p 2k +x; ﬁyzﬁ,kl—_v,
#(xp)= A +Z6""[ T ote O ] , (©)

par
Pp i e _p b
S i Co Che —
i, (x,p)=u,,(H, .p)le +Z(—Hm) e +e , (m=12,..,N+1)
k=l
where x, =x—H,__,, 0<x,<h and
-2 ph,, 1/ ol _
90.')1 + gm+le e . pmcnr pHHICHHl (7)
m 2P [t ° Om
1 + QOrngmﬂe ! * pmcm + pmﬂcm-l-l

are the reflection coefficients. The series in (6) represents the geomefric series and
convergent absohtely and uniformly as ] |<1. According to (6) we find the Laplace

m

transforms of stresses

_ Pxy _yzh,k, +1 *yzjjlk] -5
G (xp)=—f(p)le ° +Zl9"“ b e 7 ,

=i

(8)

Pty 2k, 2k =X
-, 2 —F Cn o Cm
m (X p) m— ( m=1 Sp) + m . —€ .
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For obtaining the inverse Laplace transforms of the solution, let us simplify the expression of

17

£l
, e_zﬁ"?mﬂ / Copal
gm 90»: + (1 H()m )gmﬂ } H 6 —2 Pl 'n'cm +}

am n|+ie

Here we find
e—z P / Courti

£y
O =G +>.Clon7 (1-62,) DY, D' =

Om mtl Pl
=l + (l + QOH:HHHIE ZthHJ""Ml )j
Using the inequality | oo €Xp(—2ph,. .. [Cp,, )] <1, the function D’ may be represented in the
form
w (re =) e

r=1

Df =Z( 1) 9(;,,,9(;,-:;i| (J—l)!r! €

Noting r+j=Fk ., and denoting that {k,., - 1)![ (m ~1)1(k,.,, )]_l =Cp is the binomial

i+l

coefficient, after substituing ¥ into 6%

o

and grouping the similar terms, we find the

following recurrence relation connecting &~ with the powers of @, ,,

n

2hy, ke p
_ ko ) ot
mm On: + Z A " gmﬂl e " 2 (9)
l"l
. knst=F I G2 Y .
" (Gun) = Z( Ch, Gl o™ (10, ) - (i0)

Noting the fact that the coefficient of the reflection 8, =4,, does not depend on the
parameter p (thus A, =oc), by the successive application of formula (1.9) we find

2kl
gkm — g(;‘;;:' + z A":m Grun o G Z .mq Aknn:’ 9 fonz, 6Xp( hm+lk i hm+2k "y J

" 0 m+1 H
c c

Kt =1 L i+l m+2
+ i AkMHAkuH“ AkN QI‘N [ ka_*_lkm“p 2km+2k +2p _ 2hNkNI)] (1 1)
prit g ooy =1 o ) Cinn Cutz Cy
Now from formulas (5) using (11) we find
2h k
m (x t) umﬂ [Hmv-l 3 ]+ Z Um m—-] (Hm—l ’t — ;xm
m Cm
u 2h b 2h K
+ Z 1) Akmﬂ ggxﬁlum—l [Hml ’ = e el 3 xm o
Koy g =1 cm Cm +
< ' _ 2hk, 2h,.k 2hk,
+ Z ( 1) we Ak':‘“A '.’:.:1_‘ A :ig(i(ih\dl'um—l (Hm—l’r Tt SONTN ix, (12)
L . cm Crrr+1 CN }

2h k -
m (x t) rrr ~1 [ m—]J )_’_ Z 80,,, Hi—1 [ m—l’r (;” “ ;xm
JH

m

200705-3




E.H. Memmedhasanov Journal of Mathemaiics, Physics and Astrononiy, New Series Volume 2 (2006-2007)

= 2h k 2k fc
+ Z A.fc,.m L o [Hm—lﬂt % 2 Nl ;)C,"J‘F...

Om+1™~" m—1
KoKy =1 cm Cm+i
oD
k ko .. . 2]1 k ] k 2]1 k
+ ‘ Z A it A :l.:l A Ky 80‘:]0”, l (Hmuht_ mm m+l i+l — NN ;x,,, ,
L R Cm cm+l CN

Here for m=N,N +1 we define

x X
Uy (x,t) =u, {HN,I~—CN+' ], Ty (x,t) =0y (HN,t—%J,
N+l N+l

(x t)= N- 1{ w-tof J+Z uN I[HN—l’t_M;xNJ’ (13)

kel Cu

2h.k
JN(x’t)zo-N—l(HN—]’t ]"'Zgw Ty I[HNIDI_%;XN]
N

k=1 N
Here the notation

f(z,y;x,,,)=f(z,y—x—'"J—f(z y+ }
c"’! cﬂ'f

is defined. For the displacement field, in the first layer u, (x,r) we talke

f(y;xl):f£y—i‘]+f(y+£‘~)
Cl cl

Satisfaction by formula (1.12) the equation of motion, initial and boundary conditions are
easily seen. It is seen from (1.13.) that if pycy = Py, Cun (Goy =0) the reflection waves on

the plane x=H, is absent. For p,,.c,,, —>0 we have &,, —1, then the reflection takes

place as in the case for the free boundary. i.e. for the layered plate with the finite thickness
H,,but for py,cy, —>», 6, —>-1 reflection takes place as it does from absolutely hard

bound (N layered plate lies on the absolutely hard halfispace).

The sum in formulas(1.2) for each concrete time consists of finite number ofi the terms
because all functions included in it are equal to zero for negative values of their arguments.
Each term in (1.12) describes the influence of the waves coming to the first layer after the
reflection from the corresponding boundary. For calculating the amplitude of these waves

it is necessary to define the coefficients A,f*"“ (6,,) where k, and k,,, are the numbers ofithe

m+l

reflections from the m and m+1 layer, respcctwely,whxch for given time are defined by the
formulas

k] = it , . kz — Clt_h] C2/Cl ,...,km - t_hl/cl _"'_hm—l/cmfl
2h, 2h, 2h /e,

Here the bracket denotes the whole part of the number in it. ‘
Some of coefficients 4 (4, ) for 6, €]0,1] are given in the Table. For the negative 0,

Om

m

the formula
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LIS I
A (~100l) = (0 4 (60) (14)
will be used.
From the tables it is seen that iA,’(‘:*‘\<1 which denotes the quick convergence of series in
(1.12).

In the applications we often meet the medium with periodic structure. In this case formulas
(1.12) are rapidly simplified. For example, for the twice component periodical medium

plcl = pic?: e pZm—lczm-l e pzcz = p4c4 T p?.mCZfrr =
Then
901 = _602 = 903 == 902»:4 = _602»1 Teers Aj (901 ) = A_:: (903) == AJ,: (guzm—i ) T

A (6,,) = 4] (6,,.) When j+n=2k; A(6,, ) when

Jra=2k+1, k=L2,.. (15)
Thus in this case, it is sufficient to know only 47 (6,,).

)=-4 (@

Qu+1

The Table
901 0.1 0.2 03 04 0.5 0.6 0.7 0.8 0.9

A 0.99 0.96 0.91 0.34 0.75 0.64 0.51 0.360 0.19
4 -0.099 -0.192  -0.273 0336 -0375 -0.384 -0.357 -0.288 -0.171
A 00099 0.0384 0.0819 0.1344 0.1875 02304 025 02304 0.153
A" ~0.001 -0.008 -0.024 -0.053 -0.093 -0.138 -0.174 -0.184 -0.138
A 00001 0.0015 0.0073 00215 0.047 0.083 0.1224 0.1474 0.124
4, 0188 0384  0.541 0.672 0.75 0.768 0714 0576 0342
A -0.9603 -0.844 -0.664 -0436 -0.1575 0.0512 0.2397 03312 02717
A -0.194 0353 —0447 0456 -0375 -0215 -0.014 0.1613 0212
A5 0029 0107 0209 02956 0328 02765 0.134 —0.046 -0.16l
A -0.001 -0.006 -0.0179 -0.027 -0.023 0011 0.082 0.169 0.198
A4 0029 0115 0245 0402 0562 0.691 0.749 0691 0459
AX 0201 0529  0.610 0.684 0562 0322  0.021 -0.244 -0.3138
A 0911 0668 0328 -0.020 -0281 —0.373 -0264 -0.008 0.205
47 -0.094 -0.155 -0.161 -0.110 -0.023 0.058 0.089 0.043 0.039
A 0019 0064 0.109 01208 0.082 0.006 -0.059 -0.058 0.017
A4, 0.0004  0.03 0.096 0212 0375 0.552 0.691 0.736 0552
A 0058 0214 0418 0.591 0.652  0.552 0268 -0.092 -0.322
A7 00125 0206 0214 0.148 0.0306 -0.078 —0.118 —0.058 -0.051
A 0.845 045 -0.008 —0.318 0328 -0.039 0351 0.519 0269
A4, -0036 -0516 -0380 -0.054 0234 0263 0.021 -0.197 -0.032
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