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Bornological spaces of (entire functions represented by 

Dirichlet series having slow growth 
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A B S T R A C T 

The study of spaces o f entire functions was initiated by V.G. Iyer [6] 

and the space o f entire functions represented by Dirichlet series has been 

studied by Hussein and Kamthan [4] and others. Patwardhan [9] has 

successfully studied bornological properties of the spaces o f entire function in 

terms of the coefficients o f Taylor series expansions. In this paper we have 

used another norm and study the bornological aspects of the space F of all 

00 

entire Dirichlet series a{s) ~ ^ an exp(sAn) of order zero. 
«=1 

1. I N T R O D U C T I O N 

Let C denote the field of complex numbers equipped with usual 

topology. Let F denote the family o f all transformations: 

a : C -> C such that 

(1.1) a(s) = YJanexp(sAn), 
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where X +i > X , X] > 0 , l im X - oo , s = cr + z7 ( o y real vari ables), and 
; i - > ° o 

|a„}™ is any sequence of complex numbers. Set 

(1.2) hmsup = /> , 
II - > of 

Let y and T be the abscissa of convergence and abscissa o f absolute 

convergence of a (s). 

Then Bernstein [ l ,p .4] , proved that 

(1.3) 0<r-r<D\ 

and 

log la J 1 

(1.4) • y ~ l imsup — 1 — A — . 

n -> «9 Xn 

Thus i f D* < oo and y = ao,a(s) represents an entire function and by (1.3), 

T ~ oo so that the series (1.1) converges absolutely at every point o f the finite 

complex plane. Further,, for D" = 0, we get 
log la I ' 

(1.5) x ~y -• limsup — — . 
n ~ > 00 X 

It is well known that the function a(s) is an analytic function in the half plane 

a < v (--oo < T ' < oo), We now assume that D* = 0 and 

(1.6) r — l i m s u p — - ~ — . 
n~>oo / I 
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It is well known that the transformation given by (1.1) represents an 

entire function for r = oo . Kamthan and Gautam ( [7] and [8] ) gave the set F 

the topology of uniform, convergence, They studied the properties o f bases 

of the space F using the 

growth properties o f the entire Dirichlet series. For a e F , we set 

Let p be a non-zero positive real number an d F now denote the family of all 

entire Dirichlet functions a having Ritt order p , [11], Then every a e F can 

be characterized by the condition 

It is obvious that the above class of entire functions leaves a big subclass i.e. 

those entire functions for which p = 0. To further study the growth of such 

entire functions, the notion of logarithmic order is used [5], Thus an entire 

function a(s) is said to be of logarithmic order p i f 

2. D E F I N I T I O N S 

The bornological aspect for entire function have been studied by 

Patwardhan [9] and others. The authors studied these properties for spaces of 

entire functions represented by Dirichlet series. So far in the study of these 

M (a, a) s M (<J) = hub. \a ('a + it) . 

(1.7) 

l im sup 
log log M(cr) 

logo-
= p, 1 < p < oo, 
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growt h properties of entire functions have not been taken into consideration, 

The {-/resent paper is an effort in this direction. 

In this section we give some definitions. We have 

2.1„ A homology on a set X is a family B of subsets of X satisfying the 

fo llowing axioms: 

(\) B is a covering ofX, i.e. X = [JB; 

(ii) B is hereditary under inclusion, i.e. i f A e B and B is a subset o f X 

contained in A, then B e B ; 

(iii) B is stable under finite union. 

A pair (X, 'B) consisting of a set X and a homology B on X is called a 

bornological space, and the elements of B are called the bounded subsets o f X 

2.2. A base of a homology B on X is any subfamily B D of B such that every 

element of Q is contained in an element of B 0 . A family B„ of subsets of X 

is a base for a homology on X i f and only i f B c covers X and every finite 

union of ele ments of B D is contained in a member of B 0 . Then the collection 

of those subsets of X, which are contained in an element of B, ( defines a 

homology B on X having B 0 as a base. A homology is said to be a homology 

with a countable base i f it possesses a base consisting of a sequence of 

bounded sets. Such a sequence can always be assumed to be increasing. 

2.3. Let E be a vector space over the complex field C. A homology B o n £ 

is said to be a vector homology on E, i f B is stable under vector addition, 

homothetic transformations and the formation o f circled hulls or, in other 

22 



Bomological spaces of entire functions represented by ... 

words, i f tb.e sets A+B, X A, ( J F / A belong to B, whenever A and B belong to 

B and Xe C. Any pair ( E,B) consisting of vector space Fi and a vector 

homology on E is called a bomological vector space, 

2.4. A vector homology on a vector space E is called a convex vector 

homology i f i t is stable under the formation of convex hulls. Such a 

homology is also stable under the formation of disked hulks, since the convex 

hull of a circled set is circled. A bomological vector space (E, B) whose 

homology B is convex is called a convex bomological vector space. 

2.5. A separated bomological vector space (E, B) or (a separated homology 

B) is one where {0} is the only bounded vector subspace o f E . 

2.6. A set P is said to be bornivorous i f for every bounded set B there exists a 

t e C teO such that pi B c P for all fj, e C for which | ju \ < \ t\. 

2.7. Let E be a vector space and let A be a disk i n E not necessarily 

absorbent in E. We denote by EA the vector space spanned by A, i.e. the 

space [JX A - [jx A. 
X>o A<ik 

2.8. Let E be a bomological vector space. A sequence {xn} in E is said to be 

M-conver/gent to a point x e E i f there exists a decreasing sequence [tn} of 

positive real number tending to zero such that the sequence 
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2.9, Let E be a separated convex bomological space. A sequence \xn} in E is 

said to be a bomological Cauchy sequence (or a Mackey-Cauchy sequence) in 

E i f there exists a bounded disk B c E such that {xn} is a Cauchy sequence 

in EB, For more details we refer to [3]. 

3. T H E SPACE T 

Let p > 1 be any positive real number. Further we assume that F 

denotes the space of all entire Dirichlet series satisfying (1.1) to (1.7) and 

/-j n t' loglogM(cr) . 
(3.1) hmsup - - £ — 2 . — ^ - i - < p < +oo. 

c r - > « logcr 

It is known [10] that (3.1) is satisfied i f and only i f 
(3.2) timsup < p - 1 . 

<*->m loglogja, ( | '" 

For an entire function a (s), define the number | j a || by 

(3.3) I a j | ~ l.u,b\\ an ||iU", n > 1. 

For each a eF, we define 

(3.4) \\a :p + S | = £ | a n \ e - ^ s ' p ^ , 
1 

where S > 0 is arbitrary; On account o f (3.2), (3.4) is clearly well defined. Let 

f (p,5) denote the space r equipped with the norm ||.: p + 81|. We define a 

homology on T w i t h the help of defined by (3.3). We denote by Bk the 
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set {a e f : | a || < k). Then the family B 0 - IB,, ;k - 1,2,... ,} forms a base for 

a homology B on F. 

We now prove 

Theorem 3.1. (F, B) is a separated convex bomological vector space with a 

countable base. 

Proof. Since the vector homology B on the vector space F is stable under 

the formation o f the convex hulls, it is a convex vector homology. Since the 

convex hull o f a circled set is circled. B is stable under the formation of 

disked hulls, and hence the bomological vector space (/"', B) is a convex 

bomological vector space. Now to show that {0} is the only bounded vector 

subspaces o f F, we must show that F contains no bounded open set. Let 

( J (s) denote the set of all a e F such that || a |j < s. 

To prove the result stated, it is enough to show that no \j (s) is bounded, that 

in, given I ) (e), we have to prove that there exists M {q) for which there is 

positive number c , we can find a sufficiently large positive integer 

no c > 0 such that [ J (s) c e ( J (if). For this purpose, take r/ ~ t Given a 

A,., so that c < 2, Let exp(sA„ ( ) . Then 
2) 

so that c ]a 
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does not belong to (J(?7) that is, a £ c [J(?/). This shows that {J(s) is not 

bounded. Thus {0} is the only bounded vector subspace of F, and hence 

(F,B) is separated. Since B possesses a base consisting of increasing sequence 

of bounded sets, B is a homology with a countable base. Thus (F,B) is a 

separated convex bomological vector space with countable base. This proves 

Theorem 3.1. 

Theorem 3.2. B contains no bomivorous set. 

Proof. Suppose B contains a bomivorous set A . Then there exists a set B. e 

B such that A c. B{ and consequently/?,, is also bomivorous. We now assert 

that i f z, > i, then i B, <£ Bj for any / e C which leads to a contradiction. I f 

z, > i, it is easy to see that t Bt <£ Bi for any i f . C such that | / j > 1. Now 

we prove that t B,t <£ Bi for any t e C such that | / j < 1 also. Let thus 

\t\ < 1. Since z , / z > 1, we can choose n such that 

1 < 1/111 < ( z ; -Now let an e C be such that il° l\ t j < I a I < if" and let 

a = a„esX", Then \a \ = I a„ \Ui" < z, and hence 

ta„esX" ta„ > i and hence a e Bi . Now \\ta\\ 

(a i Bi. Thus tBh <£ 5(. for any t e C. This proves Theorem 3.2 

The following result is due to I I . Hogbe and Nlend [2], 
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Theorem 3.3. The Mackey-convergence in a bornological vector space E is 

topologisable i f and only i f E has a bounded bornivorous set. 

Combining Theorems 3.2 and 3.3, we get the following: 

Corol lary 3.1. The Mackey -convergence of F is not topologisable. 

Proof. Suppose the Mackey-convergence of F is topologisable. Then by 

Theorem 3.3 F has a bounded bornivorous set and this contradicts Theorem 

3.2. 

4. 5 -NORMS O N F 

We define, for each 8 > 0 , the expression 

It is easily seen that, for each ( p,8 ) , (4.1) defines a norm on the class of 

entire functions represented by Dirichlet series. We shall denote by F( p,S) 

the space F endowed with this norm. We denote by B ( i the homology on F 

consisting o f the sets bounded in the sense of the norm | a : p + 81|. We now 

prove 

Theorem 4.1. B = [ J B ( S . 

(4.1) a : p + 8II = y a\e a eF. 

Proof. Let B e B . Then there exists a constant J such that a < J for all 

a„es" e B. Then a < J for all n . 
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Choose S > 0 , such that e-(p+*Mp+*-i) < _ i , 
J 

Then J1" < e^s)i(P+s-i) ^ 

or 

| a n | e-^P^)'(P+sH) < yA, ̂ ( ^ / ( ^ - D ( ^ > £ w l i e r e j > o, we have 

« x \- p-— - - ^ M 

n=l ,1=1 

< 00 , 

Hence B eBs and so B e ( J B ^ . 
S>a 

For the reverse inclusion let B eHs. then there exists a constant J 

such that, for all a e B , || a : p + S |j < J , 

i.e. f > <j 

or [ a j s : . / ^ " ^ ^ ^ - 0 

i.e. | « „ P < j ' ^ ( e ' U P ^ ) W ) j > ^ ) / ; 

i.e. || a I < /.« A. ( / " A" e < " ^ M p + i - i j ' < m _ 

Thus f ; s B and hence [ J B ( S a B . This completes proof of Theorem 4,1 . 
8>o 
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Lemma 4.1 . In the topological dual F' of every functional is o f the 

form 

co -co 

/ (a) = cn «„ - a ~ ^ a

n

 eSl" ' i^" a n Q l only i f the sequence 

c„ \e 
-/!,.< p+(S)/ (p t"<5~~')} is bounded. 

Proof. Suppose that / (a) is a continuous linear functional on F. Then 

there exists k > 0 such that 

(/ (a) j < k I a : p + (5 |j for every « . 

Let ¥ n = esA« and f(yn) = cn ( » > 1 ) . 

In a =• ^ a,, e's,t" = H m ^ f i , ^ • Since / is continuous, we have 

n=\ n~*° i 

( " 
f (a) = f l im V ai esX" 

Beasts) 

V w 

« 
' i i m Z a . ' / ^ , ) 

= l im > a,c 

X"1 

Also I c„ | < /c j ^„ : p + 8 \ = k e K (-°+s^+s~» , 

Then {\c J e -^ -^ 'O^- - 1 ) | = ^ e - 2 - t „ ( P + t f ) / ( ^ + i - i ) 
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Hence {| cn \ e-A"lp+m0+s'l)} is hounded for all n = 1,2,... . 

Conversely let {| c„ \ e~^s)i(P^A) j b g b o u n d e d f o r a l i „ =1,2, . . . . 

Let / be defined by 

00 00 

f(a) - ~Y^cn a n ' a ~ X a » e*X" ' m e n / ' s linear functional and 
n = l «=»1 

00 

| / ( « ) h Z k l k l 
,1=1 

< jy,e-XAp+S)l(p*s~]) \ a„ I for some k> 0 

= /c j) a : p + 51 for all a . 

Hence f{d) is continuous on F. This proves Lemma 4.1. 

Theorem 4.2. The bornologicai dual 7"" of F is the same as its topological 

dual r . 

Proof. Let V be the vector space of all linear functional on the vector 

space / ' . For every f e T and a e F we denote by < a,f > the scalar / 

(a ), i.e. the value of linear functional / at the function a , the map 

P x F -> K defined by (a,f) —>< a,f > is a bilinear form on F x F called 

the canonical bilinear form. Let. F be the topological dual o f F, i.e. the 

vector space of all continuous linear functionl on F. Since F' is a subspace 

of F , the restriction of the canonical bilinear form induces a duality between 
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F and F', Since F is locally convex space and separated, it follows from 

Corollary 2 to Theorem 1 of [3] that this duality is separated in F. 

Let the vector space F* be the set of all bounded linear functionals in 

the sense of homology on F which is a separated by Theorem 3.1. We can 

induce a duality between F and F * by using the bilinear form 

( a , / * ) —»< a,f* > = f*(a), for a e F and / * e T ' , This duality is called 

the bomological duality between F and F". 

Let tr be the space F, endowed with the locally convex topology 

associated with the homology of F . Since, algebraically, F * = (tr)' [the 

topological dual of F], we see that the bomological duality between F and 

F , is ideritical to the topological duality between tr and ( t r ) ' . 

Thus the proof of Theorem 4.2 is complete. 
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