Istanbul Univ. Fen. Fak. Mat. Der. 66 (2001), 41-54

Stability of one parameter Cg-semigroups on
hereditarily indecomposable Banach spaces

Sanziana Caraman

Abstract
The main result is the following stability theorem: Let 7" = (T(t))s>0
be a bounded Co—semigroup on a hereditarily indecomposable Banach
space X, with the infinitesimol generator A and domain D(A), if we
denote by A* the adjoint of A and by o,(A*) the point spectrum of A*,
then T is strongly stable (which means t]'.idm IT(t)z] =0, Vo & X), if
and only if op(A*) NIR = {.

1 Introduction

The asymptotic behaviour of solutions of a differential equation #/(t) =
Au(ty, t > 0 is frequently related to spectral properties of the operator
A. In contrast to the case of finite dirnensional space, where a classical
theorem, due to Liapunov states that stability is equivalent to negativeness
of the real parts of the eigenvalues of A, there is no simple characterization
of strong stability for Cy—semigroups on Banach, or Hilbert spaces.

There have been obtained sufficient conditions for stability and we shall
mention a theorem of [Nagy and Foiag [1], that if 7 is a completely non-
unitary contraction semigroup in a Hilbert space, such that m(ic(A)NR) =
0 f:hen T 1is strongly stable (where m denotes the Lebesgue measure on
IR). For semigroups on Banach spaces, the most powerful result is due to
Avrendt-Batty [2] and the independently proof of Lyubich-Phéng (3] and
is known as the ABLP theorem: if 7 = (T'(t))1>0 is a Co—semigroup on
a Banach space X, with generator A, so that o(A) N iR is countable and
op(A*) NiR = O, then T is strongly stable.

In the last decade, the conclitions of the ABLP theorem were refined
and there have been obtained interesting generalizations of this theorem
‘see the survey paper {4]), but & spectral characterization for stability is
still an open question.
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However, sufficient and necessary conditions for strong stability have
been found for particular classes of operators on particular spaces. Such an
example is & theorem of Huang-Rébiger [5] where the countability of o(A)N
IR is characterized by means of compactness property of the ultrapowers
of T, ie.: let T = (T(t))i>0 be a bounded Co—semigroup with generator A
on o superreflexive Banach space X. Then o(A) M iR is countable if and
only if T is superstable.

In the present paper we deal with hereditarily indemcomposable Bar
nach spaces (briefly, H.I.) and state a criterion for strong stability of Co—
semigroups on such spaces.

The study of H.I. spaces is almost recent and appeared in a natural
way as an answer to some mathematical enigma. One of these was revealed
by Lindenstrauss [6] and asked whether every infinite-dimensional Banach
space X was decompuosable, that is could be written as a topological direct
sum X =Y @7, with Y and Z infinite dimensional subspaces. The answer
tuined to Ire negative and in (7], Gowers and Maurey built a Banach space
X which is not only not decomposable, but doesi not have a decomposable
subspace, i.e. a H.I. space.

Equivalently this can be expressed as it follows: if Y and Z are two
infinite-climensional subspaces of X and € > 0, then there exist y € Y and
z € Z such that |ly|| = ||zl = 1 and ||y — 2z}l <. Or in other words: when-
izver' Y and Z are closed infinite—dimensional subspaces of X, satisfying
Y NZ == {0}, then Y + Z is non—closed.

But the property of X seems to be a key to another unsol¥ed problem.
That is: does every space contain an unconditional basic sequence?” For a
long time a major problem was whether every separable Banach space had
a basis which was answered negatively by Enflo in 1973 [8]. On the other
hand, every space contains a basic sequence (that is there exists an infinite
sequenice which is a basis for its closed linesr span). The problem was if
under any permutation of the basis it still remained a basis and this was
callec! unconditional basis. In. 1991, Gowers found a contraexample and
shortly afterwards it was established that an H.I. space cannot contain an
unconditional basic sequence,

The H.I. spaces proved also to be the answer to a question of Banach
known as "the hyperplane problem”, that is whether there exist spaces that
fail to be isomorphic to a subspace of codimension one,

In this paper we are interested in the behaviour of a Cy-semigroup in
an {1.I. Banach space.
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2  Preliminaries

In the next section we need some basic knowledge from semigroup theory
and also some important spectral results applied to a H.I. Banach space.
Let’s first consider X a Banach space.

Definition 2.1. A family (T'(t)):>0 of bounded linear operators on X is
called a (one-parameter) semigroup if

T+ s)=T(@¢)T(s) forall t,s >0
T(0) =

Definition 2.2. A semigroup (T'(¢));>0 is called strongly continuous (or
Co—-semigroup) if .

InT(t)x =« for all 2 € X.
t\0
An important feature of the Cy semigroup is

Proposition 2.3. For every strongly continuous semigroup (T (¢))¢>o there
exists constants w € IR and M > 1 such that

IT )| < Me* for all t > 0.
Moreover a semigroup is called bounded if we can take w = 0,

IT(@)| < M, forallt > 0. 5

Definition 2.4. The infinitesimal generator A : D(A) € X — X of
a strongly continuous semigroup (7'(t)):>0 on a Banach space X is the

operator
1
= lim --(T'(h)x —
Az lim (T(h)x — )

defined for every z in its domain

. _ .1 ~N i
D(A) = {z € X | there ex1sﬁs %1{% E(T(h)x m)}

The generator of a strongly continuous semigroup is a closed and
densely defined linear operator that determines the semigroup uniquely
anid has the following properties:
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(i) If # € D(A), then T(t)z € D(A) and

%T(t)m =T(t)Az = AT(t)z, for all t > 0

(ii) For every t > 0 and z € X one has
/(; “T(s)z ds € D(A)
(iii) For every t > 0 one has
Ttz —~z = A/tT(s)a;ds ifee X

0
o
- /OT(S)Aa:dS if « € D(A).

And now let’s recall some results from spectral theory [9].

Assume that X is a Banach complex space and T' € L(X), where L(X)
is the seft of all linear bounded operators defined on X with values in X.
Then T' € L(X) is called strictly singular if for every infinite dimensional
subspace Y of X, the restriction T/Y of T toY is not isomorphism. And
A € U is infinitely singular for T of T — M is strictly singular, in other
words, for every = > 0 there exists an infinite dimensional subspace Ye of
X, such that the restriction of T — A to Y. has norm at most €.

Let’s denote by ap the set of all A € € so that T'— A/ is an isomorphism
on some finite codimensional subspace of X. And denote by fr the set of
all A € € so that X is infinitely singular for T or 7 = C\ ar.’

We resunie some of the needed properties of ap in the following theo-
rem (see for instance [7])

Theorem 2.5. Let X be a Banach space and T € L(X) and ar, as defined
above, then:

1) ar is an open set of C

(
(2) ar #C

(3) Ker(T — M) is finite dimensional, when A € ap :
(4)

4) If \car and (zp)nen 15 a bounded sequence in X, such that (T —\)zy,

18 morm—convergent, then x, has a subsequence which is norm-con-
vergent and the image of (T — M) of any closed subspace of X 1is
closed.
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The next theorem is the key result in studying the spectrum of a
bounded operator defined on a H.I. Banach space. The proof can be found
in Fredholm theory, or more elementary, based on the previous properties
of ag in [7].

Theorem 2.6. If X is a Banach Space, T € L(X) and X\ belongs to ar
and to the boundary of the spectrum of T, then X is an eigenvalue for T
and it is also an isolated point for o(T).

Now, let’s consider X a hereditarily indecomposable Banach space
as defined in the introduction. We are interested in the spectrum of a
bounded orierator on such spaces and this is precisely the content of the
next theorem. )

Theorem 2.7. Let X be an H.1. Banach space and 1" € L(X) then there
exists a unique Ay € o(T') so that T = ApI + 5, where S is strictly singular
and the spectrum o(T) is either finite or consists of a sequence (M), of
eigenvalue.s, converging to Ar.

3 Characterization theorem for stability of Cj—
semigroups on a H.I. Banach space

Let X be a, Banach space with dual X*, We denote by < 2*,x > the value
of ¥ € X* at € X. Let A be a linear operator with dense domain D(A)
in X. Recall that the adjoint A* of A is a linear operator from D(A*) C X*
defined as follows D(A*) = {z* € X* | for which it exists y* € X* such that
<z¥ Az >=<y* ¢ >forallz € D(A)} and if z* € D(A) then y* = A*z*.

Let, also {17(t) }s>0 be a Cp semigroup on X with generator A : D(A) C
X — X. Fort > 0 let T%(t) be the adjoint operator on T'(t). Obviously
{T*(t)}1>0 satisfies the semigroup property and, therefore, is called the ad-
joint semigronap of T'(t). However, T*(t) does not need to be a Cy semigroup
on X* since the mapping T'(t) — T*(t) does not necessarily conserve the
strong continuity of T'(t). But if we denote by Y™* the closure D(A*) in X*
and by TH(t) the restriction of T*(t) to Y* then we have that T (¢) is a
Cy—semigreup on Y*,

In the following we also need the notion of point spectrum of A denoted
by 0p(A) emnd defined by

op(A) = {) € C| \] — A4 is not one-to-one}
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and residual spectrum
or(A) = {\ € €| range(\] — A) is not dense in X},

Before stating our main result let us give an auxiliary useful result
[10].

Lernma 3.1. Let T(t) be a Co-semigroup and let A be its infinitesimal
generator. If

t
By(t)z :/0 =0T (s)a ds

then
(M — A)By(t)z = eMu — T(t)z for every z € X

and

BA(t) (M — Az = eMa — T(t)x for every & € D(A).

Theorem 3.2. Let X be an H.I Banach spoce and T = {Tt)}i>0 @
bounded Co—semigroup with infinitesimal generator A, then T is strongly
stable if and only if o,(A*) NiR = 0.

Proof. The necessity. Let’s assume there exists A € IR such that i\ €
oy (A). As the range of (A~ A) is not dense in X, by Hahn-Banach theorem
it results that there exists z* € X*, 2* # 0 so that < z*, (iA] — A)z >=0
for all x € D(A).

By Lemma 3.1 we have

< a*, ey — T(t)z >=0 for all z € D(A)

*

or
< ei)\tﬂ)*’a} S=c T*('lf) w* x>, TE D(A)

Thus, there exists ¥ € X* so that ’I‘*( ) o= eMp* 1 >0, Letz € X,
be with < z*,z »>= 1 then < T(t)z, et (t > ) Hence T'(t) is not
stable,

The sufficiency. Let A : D(A) € X — X, as A is the generator of
a Co-sermigroup it results that {\ € C | Re > w} C p(T) for some w €
IR [10].

‘Therefore p(A) # 0 and (4, D(A)) is closed. If D(A) = X, then A is
bounded by the closed graph theorem and by Theorem 2.7, o(A) is finite
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or consists of a sequence of eigenvalues converging to A4 (where A4 is the
infinitely singular point of A). If D(A) # X then let’s take oo € p(A)
and define the resolvent of A, R(c, A) = (af — A)"!. As R(a, A) is a
bounded linear operator it Lesults, by the same theorem, that the spectrum
o(R(o, A)) = {n}52 U {agr}, where oy is a sequence of eigenvalues of
R(a, A) and ap is the infinitely singular value of R(«, A). But, by the
spectral mapping theorem, [11] it results that o(R(a, A)) = {0} U {{a —
M7 X € o(A)}. ar must be 0, otherwise 0 is an eigenvalue for R(c, A)
which is invertible, so that R(a, A)z = 0 with « # 0 is impossible. Since
eigenvalues of R(a, A) correspond to eigenvalues of A it results that oy, =
(a —X,)7 ! and when a,, — 0 it implies A, — oo.

In conclusion, o(A) is finite (possibly empty) or consists of a sequence
of eigenvaliies {\, }nen that either converges to A4 € € or is unbounded.
Using, novv, a result from spectral theory (see also [2]), which is op(A4) N
iR C op( A*) N1IR and taking into account the hypothesis it results that
op(A) N 4R = P. Therefore the intersection of the spectrum of A with the
imaginexy axis is either empty or is A 4.

Now, in order to prove the strong stability of 7, we can use Arendt—
Batty technique (2], but the proof is much easier as we don’t need transfinite
induction.

Let’s first analyse the case when o(A) NiR = {Aa}, Aa = 1A with
A € IR, Rescaling 7 if necessary, we can assume that A # 0.

Let z € X and denote by F(t) = T(¢) {T (27[> —I] z, t > 0 and

N
o0 t A
by f(z) :/ e ¥ F(t)dt, Rez > 0 and fi(2) :/ e **F(s)ds, Rez > 0.
0 G
60
Observe that if T' <’/\| [) x = y then f(2) :/ e T (t)y dt = R(z, A)y,
, 0
Rez > 0, hence, the singular set of f is contained in {iA\} and f(0) =
¢
—A~Yy. On the other hand, / F(s)ds = T(t)A™ly — A7ly and finally we
0 ,

have that || f4(0) — f(0)|| = || T(¢)A~ y]|| for any y and ¢t > 0.

Before studymg the behav1oul of || f:(0) — f(0)|| as ¢t — oo by the help
of the modified type of contowr integral introduced by Newmann [12], let’s
remark an useful inequality:

(3.4) ” / e~ F(5)ds

M||w| where M = sup ||T'(¢)]|
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It can be easily verified that:

t ¢
/ e~ P(s)ds :/ e AT <s + g~~> xds —/ e““\ST(s)w ds =
0 0 |A| 0

B o
=/ e (s)x ds —/ e (s)z ds
0

¢
Hence we obtain (3.4).
Consider, now, the disjoint intervals (—oo, —R), (A—¢, A+¢€), (R, +0)
where R is any real number greater than 0 and R—|A—e > 0 and |A|—e > 0.
And let’s take a simply connected open set DO{z | Re 2>0, z # iA}

such that f has a holomorphic extension on D and consider the following
4

contour T in D given by " = k) I'; where I'y = {|2| = R | Rez > 0},
i=:1
I'y = {jz—~ i\ = € | Rez > 0} and I's is a smooth path joining iR to
t(A+¢€) and I’4 is a smooth path joining ¢(A —¢€) to —iR, both I'y and I'y
lying entirely (except the endpoints) within DN {Rez < 0} so that I' is a
closed simple contour with 0 in its interior.
To serve our purpose, we shall consider a holomorphic function in the
intericr of the domain delimitated by I' which is H(z) = h(z)et*(f(z) —
2 2 2
A
fi(%)) where h(z) = <1 + -%5> (1 + e _EM)Q> SR And by Cauchy’s

1 [ H{z
theorem f(0) — £,(0) = H(0) = o /»w(%)wd" It remains to estimate the
r z

and so

28
/ 3] ‘Z’\ST( Jzds ?7r

t

integrand on different parts of I'. ,

a) if |z| = R, Rez > 0 that is z = Re' with 0 ¢ ( z —) we have:

22

“(ft tzll_ ]/ (s— tzF ll
(3.5)
[ M
‘ Fs+t)ds _Rcosﬁy
And so,
(3.6) 1+-}Z{§i*2c050
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£2

TR

A2 .
There is a unique a = {1 } Vi SO that

2 2
(3.7} |h(z)] < (1 + (R_g W)Z) 5 A 5 - 2acosf = 2cccos

And by (3.5), (3.6) and (3.7) we have that:

%Mﬁﬁd
Re ;>0 z

b) If |z ~ i)\ =€, Rez >0, z =i\ +¢ec’ and 6 € <~g, g) we have:

27er[04

(3.3) —% Iyl

|(F(2) = fe(z))e

t o _ i —~1AS \ :
= e’z/ e % (e ¢ F(s)> dsj|.
Jt

And letting G(s) =/ e” MU E (u)du, we obtain:

0
(f(z) - ft(z))etz“; = |lgt= <_e~—tsew — seie/tooe““ewG(s)ds)

(3.9) )
- (t-s)ecost __.ﬂ]\[
< plel (1< e ) < gl
And since
4)?
(3.10) h(2)] < sy - o0
and
1 1
(3.11 1. 1
) lz] T A\ —e

we obtain by (3.9), (3.10) and (3.11) that:

/ H(z)
J1z=iX]=e z

Rez>0

32MA
<e¢ MIA|m leell = 32me M B z|],

(312 F = ¢)

A
(A2 —e2) ([Nl —e)

where 3 =




¢) Let’s consider, how, the contour '3 UTy., As 0 ¢ I's UTy the

M is bounded for z € I's UI'y and also, as I's and T'4

z
are lying entirely within D N {Rez < 0} it follows that, for z € T'3 U T4,

tlim e = 0 and, finally, by the bounded convergence theorem we have,
— 00

g tz
tlim / Z-E@dez =0, %= 1,2. But f; is an entire function therefore
-00 i VA
(3.13)
/ fl&?)fr,(z)etzdz :/ fl'_(f)ft(z)it_z_dz +/ | ﬁ(z)ft(z)etzdz
Tty {z{=R fz—iN]=¢

A z
“ Re z<0 z Rez<0

function

For z == Re® with 6 € (g 3;) we have, as in (a), that:
tz T
”ft(z)(/ R}cos 0] il

And it results that:

27rMoz

< =l

(3.14) /l n ﬂfﬁfglfd

Rez<0

For |z i)\ =&, Rez < 0, that is z = i\ +e¢? and 6 € (g, 3%) we have
similarly to (b) that:

V h(z )ft(
lz—iA|=¢

Therefore, taking into account (3.8), (3.12), (3.13), (3.14) and (3.15) we
obtain:

(3.15) < 32reMf|z ||

27rM_Cf Wyl + 32me M B||2|]

316 170 - HON < 5 2|

And finally,

3.17) 1£(0) = RO < 275 Iyl + 326 Bl
But as ||ft(0).— = ||7'(t)A'y|), t > 0 and since R > 0 can be chosen

arbitrarily large and € eubltlanly small, it results that thm “T t)A~™ y“ =(
— 00
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where y = {T <§z’

dense range in X.

) - IJ z. It rermains to show that {T (%) - I} has

2m

|>\l>> then by the
Spectral Mapping Theorem, it results that 3n € N so that A, = in|A| €

or(A).
But as op(A*) = 0,(A), then o,(4A) NiR = @ so that we arrived to a
2 -
contradiction, that means that {T <ﬁ> -~ I ] is dense in X and we have:
tlim IT(#)w| = 0 for any w € D(A). Since D(A) is dense in X it results
—~CO

that tlim |T(t)z]| = 0 for any = € X.
—00

If, by the contrary, we suppose that 1 € o, (T(

In the case when o(A) N4IR = @, things are much more simplier. It’s
enough to take: F(t) = T(t)z, for any z € X and ¢t > 0. Observe that
|F ()] < Mlz||, where M = sup ||T(¥)|| < co.

>0

And using the same notations as in the precedent case we obtain that:
IT@)yll = [1f:(0) — £(0)|| for any y € D(A) and ¢ > 0.
In order to study the behaviour of || f;(0) — f(0)|| as t — oo we estimate the

" H(=
integral / ( )dz, where H is a holomorphic function in the interior of a
r oz

domain with boundary I = Ty U I’y and is defined by
2

H(z) = {1+ 2—2 e [fi(2) — f(2)]. And T is a contour in an open set

D> {z | Rez > 0} where f has a holomorphic extension and eonsists of:
I''={|z| =R|Rez >0}, Re R}

and I'2 a smooth path joining iR to —iR and lying entirely in D except the
" endpoints. '

By estimating the integrand on I'y and respectively on I's we finally
obtain that:

(3.1 140) ~ SO < 2 .

It casily results that 7 is strongly stable.

4 An application to the stability theorem

In the following, let us consider a bounded Cp-semigroup 7 = (T'(t)):>0
with generator A, on a reflexive Banach space X.
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Tnen by Jacobs-Glicksberg—de Leeuw Theorem [13] the space X splits
into two closed 7'(¢)-invariant subspaces X = Xo @® X, for all £ > 0.
XNo is called the irveversible part of X and is defined as:

Xo == {z € X | 0 is a cluster point for the weak topology of {T'(t)x}s>0}
X, is the reversible part of X and is equal with
X, =3span{z € D(A) | JiX € iR, Az = iAz}

For each t > 0, let us denote by Tp(t), the restriction of T'(¢) to Xo and by
T-(t), the restriction of T'(t) to X,. It is already proved that (To(t))i>0 and
(T(t))t>0 are also bounded Cy-semigroups with generator Ag and respec-
tively A,.

\

Theorem 4.1. Let X be a reflexive H.I. Banach space and T = (T'(t))t»0
a bounded Cy-sernigroup with generator A. Then Ty = (To(t))e>0 s always
strongly ‘stable.

Proof. First let us remnark that relfexive H.I. Banach spaces exist (see, for
instance, Gowers’ example [7}).

By the definition of Xg, it results that Ag has no eigenvalues on the
imaginary axis, o,(An) NiR = 0.

theorem, it results there exists f € X with f # 0 so that
< (A - Ag)z, f >=0, for any z € Xo
and. it follows that
<z, (Al ——’AE‘))f >=0, v X

And finally
Aif = A
Therefore, A € 0.,(Af) and so

(4.1) a(Ag) C op(Ap)
On the othe: hand, we have [2.3;2]

(4.2) (Tp(A()) Nk C UT(A())
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By (4.1) and (4.2) it results
(4.3) ap(Ag) NiIR € op(Ap)
As X is reflexive, applying (4.3) to A we have
(4.4) op(A3) IR € o A3) = 0p(Ao)
And (4.3), (4.4) imply
op(Ag) NiR = crp(Ag) NIR =0

Suppose, now, that Xy is an infinite subspace. As X is an H.I space, it
results that also Xg is an H.I. space. Thus 7p is a bounded Cy-semigroup
defined on an H.I. Banach space and the adjoint of its generator has no
eigenvalues on tlie imaginary axis,, By Theorem 3.2 we may conclude that
Ty is strongly stable.

In the case Xp a finite diniensional space, then it easily results the
same conclusion.

Remark 4.1. If Ap is unbouinded then 7 is strongly stable on a finite
codimension subspace of X.
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