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Stability of one parameter Co-semigroups on 
hereditarily indecomposable Banach spaces 

Sanziana Carama.n 

Abstract 

The main result is the following stability theorem: Let T — (T{t))t>o 
be a bounded Co-semigroup on a hereditarily indecompdsable Banach 
space X, with the infinitesimal generator A and domain D(A), if we 
denote by A* the adjoint of A and by ap(A") the point spectrum of A*, 
then T is strongly stable (which means lim ||T(i)a:|| = 0, Va; € X), if 

t —> oo 
and only if av(A*) D iTEL — 0. 

1 Introduction 

The asymptotic behaviour of solutions of a differential equation u'(t) — 
Au(t), t > 0 is ii-equently related to spectral properties of the operator 
A. hi contrast to the case of finite dimensional space, where a classical 
theorem, due to Liapunov states that stability is equivalent to ilegativeness 
of the real parts of the eigenvalues of A, there is no simple characterization 
of strong stability for Co-semigroups on Banach, or Hilbert spaces. 

There have been obtained sufficient conditions for stability and we shall 
mention a theorem of Nagy and Foias, [1], that if T is a completely non-
unitary contraction semigroup in a Hilbert space, such that m(ia(A) PllR) — 
0 i;hen T is strongly rdable (where m denotes the Lebesgue measure on 
IR). For semigroups on Banach speices, the most powerful result is due to 
Arendt-Bat ty [2] and the independently proof of Lyubich-Phong [3] and 
is known as the ABLP theorem: if T — (T(t))t>o is a Co-semigroup on 
a Banach space X, with generator A, so that cr(A) (MIR. is countable and 
cr : p(A*) ruIR, = 0, then T is strongly stable. 

In the last decade, the conditions of the ABLP theorem were refined 
8,nd there have been obtained interesting generalizations of this theorem 
•'(see the survey paper [4]), but a spectral characterization for stability is 
still an open question. 
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However, sufficient and necessary conditions for strong stability have 
been found for particular classes of operators on particular spaces, Such an 
example is a theorem of Huang;-Rabiger [5] where the countability of a(A)n 
iJR, is characterized by means of compactness property of the ultrapowers 
of T , i.e.: let T = (T(i))t>o be a bounded Co-semigroup with generator A 
on a superreflexive Banach space X. Then er(A) OiM, is countable if and 
only if T is auperstable. 

In the present paper we deal with hereditarily indemcomposable Ba
nach spaces (briefly, H.I.) and state a criterion for strong stability of Co-
semigroups on such spaces. 

The study of H . I . spaces is almost recent arid appeared in a natural 
w ay as an answer to some mathematical enigma. One of these was revealed 
by Lindenstrauss [6] and asked whether every infinite-dimensional Banach 
space X was decomposable, that is could be writ ten as a topological direct 
sum X ~Y © Z , wi th Y and Z infinite dimensional subspaces. The answer 
turned to be negative and in [7], Gowers and Ma.urey built a Banach space 
X which is not only not decomposable, but does not have a decomposable 
subspace, i.e. a H . I . space. 

Equi valently this can be expressed as i t follows: if Y and Z are two 
infinite-dimensional subspaces of X and e > 0, then there exist y &Y and 
z € Z such that \\y\\ \\z\\ -- 1 and \\y - z\ < e. Or in other words: tuhen-
nver Y and Z are closed infinite-dimensional subspaces of X, satisfying 
Y f l Z --- { 0 } , then Y + Z is non-closed. 

Bu.t the property of X seems to be a key to another unsolved problem. 
That is: does every space contain an unconditional basic sequence?" For a 
long time a major problem was whether every separable Banach space had 
a basis which was answered negatively by Enflo in 1973 [8]. On the other 
hand, every space contains a basic sequence (that is there exists an infinite 
sequence which is a basis for its closed linear span). The problem was if 
under any permutation of the basis it still remained a basis and this was 
called unconditional basis. In. 1991, Gowers found a contraexample and 
shortly afterwards i t was established that an H.I. space cannot contain an 
unconditional basic sequence. 

The H . I . spaces proved also to be the answer to a question of Banach 
known as "the hyperplane problem", that is whether there exist spaces that 
fail to be isomorphic to a subspace of codimension one. 

In this paper we are interested in the behaviour of a Co-semigroup in 
an H . I . Banach space. 
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2 Preliminaries 
In the next section we need some basic knowledge from semigroup theory 
and also some important spectral results applied to a H . I . Banach space. 

Let's first consider X a Banach space. 

D e f i n i t i o n 2 . 1 . A family (T(t))t>o of bounded linear operators on X is 
called a (one-parameter) semigroup if 

T(t + s) = T(t)T(s) for all i , s > 0 
T(0) - J. 

D e f i n i t i o n 2.2. A semigroup (T(i))t>o is called strongly continuous (or 
Co-semigroup) i f , 

Inn T ( i ) x = x for all a; € X. 
t \ o v y 

An important feature of the Co semigroup is 

P r o p o s i t i o n 2.3. For every strongly continuous semigroup (T(t))t>o there 
exists constants w e K and M > 1 swc/i i/iai 

| |T( i ) | | < Mewt for all t > 0. 

Moreover a semigroup is called bounded i f we can take iu = 0, 

| |T( i ) | | < M , for all t > 0. * 

D e f i n i t i o n 2,4. The infinitesimal generator A : D(A) C X —> X of 
a strongly continuous semigroup (T(t))t>o on a Banach space X is the 
operator 

Ax = \im y(T(h)x-x) 

defined for every % in its domain 

D(A) = {x € X | there exists lim ^(T(/i)a; - a;)}. 

The generator of a strongly continuous semigroup is a closed and 
densely defined linear operator that determines the semigroup uniquely 
and has the following properties: 
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(i) K x e D(A), then T{t)x & D{A) and 

~T(t)x = T{t)Ax = AT(t)x, for all t > 0 

(ii) For every i > 0 and x e X one has 

ltT(s)xds 6 D(.4) 
Jo 

(in) For every i > 0 one has 

T(i)a: - x = A ltT(s)xds if a; e X 
Jo 

= I T(s)Axds ifx 6 D(A). 
Jo 

And now let's recall some results from spectral theory [9]. 
Assu me that X is a Banach complex space and T 6 L(X), where L(X) 

is the set of all linear bounded operators defined on X w i th values in X. 
Then T E L(X) is called strictly singidar if for every infinite dimensional 
subspace Y of X, the restriction T/Y of T to Y is not isomorphism. And 
A 6 £' is infinitely singular for T if T — XI is strictly singular^ in other 
words, for every z > 0 there exists an infinite dimensional subspace Y£ of 
X, such that the restriction of T - XI to Y£ has norm at most e. 

Let's denote by ax the set of all A 6 C so that T- XI is an isomorphism 
on some finite codimensional subspace of X. And denote by fix the set of 
all A 6 C so that A is infinitely singular for T or fix = © \ ax- " 

We resume some of the needed properties of ax in the following theo
rem (see for instance [7]) 

T h e o r e m 2„5. Let X be a Banach space and T € L(X) and ax, as defined 
above, then: 

(1) ax is an open set of € 

(2) a T ^ € 

(3) Ker (T — XI) is finite dimensional, when X G ax ' 

(4) IfXEax and (xn)n^^ is a bounded sequence inX, such that (T~~XI)xn 

is norm-convergent, then xn has a subsequence which is norm-con
vergent and the image of (T — XI) of any closed subspace of X is 
closed. 
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The next theorem is the key result in studying the spectrum of a. 
bounded operator defined on a H. I . Banach space. The proof can be found 
in Fredholm theory, or more elementary, based on the previous properties 
of a'T in [7]. 

T h e o r e m 2.6. If X is a Banach space, T G L(X) and X belongs to a? 
and to the boundary of the spectrum ofT, then A is an eigenvalue for T 
and it is also an isolated point for cr(T). 

Now, hat's consider X a hereditarily indecomposable Banach space 
as defined i n the introduction, We are interested in the spectrum of a 
bounded operator on such spaces and this is precisely the content of the 
next theorem. 

T h e o r e m 2.7. Let X be an ILL Banach space and T G L(X) then there 
exists a unique Ax G < T ( T ) so that T = X T I + S, where S is strictly singular 
and the sptzctrum o~(T) is either finite or consists of a sequence (Xn)^L1 of 
eigenvalues, converging to A ^ . 

3 Characterization theorem for stability of C o -
semigroups on a H . I . Banach space 

Let X be a, Banach space with dual X*. We denote by < x*, x > the value 
of x* G X* at x £ X. Let A be a linear operator wi th dense domain D(A) 
in X. Recall tlrnt the adjoint A" of A is a linear operator from D(A*) C X* 
defined as follows D(A*) = {x* G X* | for which i t exists y* G X* such that 
< x\ Ax >=<'if,x> for all x G D{A)} and if x* G D(A) then y* = A*x*. 

Let, also {7. n (i)} i >o be a C'0 semigroup on X wi th generator A : D(A) C 
X —> X. For t > 0 let T*(i) be the adjoint operator on T(t). Obviously 
{T*(t)}t>o satisfies the semigroup property and, therefore, is called the ad
joint semigroup of T(t), However, T*(t) does not need to be a Co semigroup 
on X* since the mapping T(t) —> T*(t) does not necessarily conserve the 
strong continuity of T(t). But if we denote by Y* the closure D(A*) in X* 
and by T+(t) the restriction of T*(t) to Y* then we have that T + ( i ) is a 
Ccr-semigroup on Y*. 

In the following we also need the notion of point spectrum of A denoted 
by op(A) ?i.nd defined by 

o-p(A) = { A G C | A J — A is not one-to-one} 
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and residual spectrum 

ar(A) = {A G © | range(AJ — A) is not dense in X}, 

Before stating our main result let us give an auxiliary useful result 
[10]. 

L e m m a 3 . 1 . Let T(t) be a Co-semigroup and let A be its infinitesimal 
generator. If 

B\(t)x = / ex{t~s)T(s)xds 
Jo 

then 
(XI - A)Bx(t)x = extx - T(t)x for every x G X 

and 
Bx(t)(XI - A)x = extx - T(t)x for every x G D(A). 

T h e o r e m 3.2. Let X be an H.I. Banach space and T = {T(t)}t>o a 
bounded Co-semigroup with infinitesimal generator A. then T is strongly 
stable if and only if ap(A*) fu3R = 0. 

Proof . The necessity. Let's assume there exists A G JR. such that iX G 
o~r(A). As the range of (XI—A) is not dense in X, by Hahn-Banach theorem 
i t results that there exists x* € X*, x* ^ 0 so that < x*, (iXI - A)x > = 0 
for all x e D(A). 

By Lemma 3.1 we have 

< x\ eiXtx - T(t)x >= 0 for all x 6 D(A) 

or 
< eiXtx'\x >=< T*(i),x*,x >, x € D(A). 

Thus, there exists x* G X* so that 1*{t)x* = eiXtx*, t > 0, Let' x G X, 
be wi th <x*,x >= 1 then < T(t)x,x* >= eiXt (t > 0). Hence T(t) is not 
stable. 

The sufficiency. Let A : D(A) C X —» X, as A is the generator of 
a Co-semigroup it results that {X e € \ ReX > w} C p(T) for some u> G 
IR [10], 

Therefore p(A) ^ 0 and (A, D(A)) is closed. I f D(A) = X , then A is 
bounded by the closed graph theorem and by Theorem 2.7, a (A) is finite 
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or consists of a sequence of eigenvalues converging to A A (where A^ is the 
infinitely singular point of A). I f D(A) X then let's take a G p(A) 
and define the resolvent of A, R(a,A) — (al — A ) - 1 . As R(a,A) is a 
bounded linear operator i t results, by the same theorem, that the spectrum 
a(R(a,A)} — { a n } ^ = 1 U {O;R}, where an is a sequence of eigenvalues of 
R(a,A) and an is the infinitely singular value of R(a,A). But, by the 
spectral mapping theorem, [11] i t results that a(R(a,A)) = {0} U {(a -
A)"" 1 | A G a (A)}, OIR must be 0, otherwise 0 is an eigenvalue for R(a,A) 
which is invertible, so that R(a)A)x = 0 wi th x ^ 0 is impossible. Since 
eigenvalues of R(a,A) correspond to eigenvalues of A i t results that an — 
[a — Xn)~1 &nd when an —> 0 i t implies A n —* oo, 

In conclusion, a (A) is finite (possibly empty) or consists of a sequence 
of eigenvalues { A n } n e j v that either converges to A^ G © or is unbounded. 
Using, I K W , a result from spectral theory (see also [ 2 ] ) w h i c h is o-p(A) n 
iJR C ap( A*) D iJR and taking into account the hypothesis i t results that 
crp(A) f l 7,1R = 0. Therefore the intersection of the spectrum of A wi th the 
imaginary axis is either empty or is XA-

Now, in order to prove the strong stability of T , we can use Arendt-
Batty technique [2], but the proof is much easier as we don't need transfmite 
induction. 

Let's first analyse the case when a (A) D ilR — { A / } , A^ = iX wi th 
A G IR. Rescaling T if necessary, we can assume that A ^ 0. 

Let x G X and denote by F(t) = T(t) T - I x, t > 0 and 

foo ft „ 
by f(z) = / e~tzF{t)dt, Re z > 0 and ft(z) = / e - s *F(s)ds, Rez > 0. 

Jo JO 

Observe that if T - 7J x = y then f{z) = J e _ i 2 T ( t ) y dt = R{z, A)y, 
Rez > 0, hence, the singular set of / is contained in {iX} and / (0) = 

rt 
-A'ly. On the other hand, / F(s)ds = T(t)A~ly - A~ly and finally we 

Jo 
have that | | / t (0) - / (0 ) | | = \\T{t)A-xy\\ for any y and t > 0, 

Before studying the behaviour of j | / t (0) - / (0 ) | | as t —> oo by the help 
of the modified type of contour integral introduced by Newmann [12], let's 
remark an useful inequality: 

(3,4) 
t 
e~lXsF(s)ds 

4vr 
< —M||cc | i , where M - sup 

|A| i>o 

47 



I t can be easily verified that 

rt ft 
-i\t 

10 

and so 

F{s)ds e~iXaTl8+~ )xds-
o 

e-iXsT(s)xds = 

t+— 
1X1 -iXsrp r ( s ) a ; d s - We~iXsT{s)xds 

Jo 

t + - -
| A | e - i A s T( i ; ) : rd s < 

Hence we obtain (3.4). 
Consider, now, the disjoint intervals ( -co, —R), (A — e, A + e), (i?, +oo) 

where K is any real number greater than 0 and R— \ Aj—e > 0 and | A|—e > 0. 
And let's take a simply connected open set DD{Z \ Rez>0, z ^ iX} 

such that / has a holomorphic extension on D and consider the following 
4 

contour T in D given by F = ( J r . ; where I \ = {\z\ = i? | i?ez > 0} , 
¿==1 

1̂ 2 = {\z — *A| = e | i i e z > 0} and is a smooth path joining iR to 
i(X 4- e) and F4 is a smooth path joining i(X — e) to —iR, both F3 and I~4 
lying entirely (except the endpoints) within D D {Rez < 0} so that F is a 
closed simple contour wi th 0 in Its interior. 

To serve our purpose, we shall consider a holomorphic function in the 
interior of the domain delimitated by T which is H{z) = h(z)etz(f(z) — 

ft(z)) where h{z) ~ (1 + ~ ~ ] ( 1 + — — r r r ; ) - . 3 • ^- And by Paucity's (z - iX)2 J A 2 - e 2 

1 f I I (z) 
theorem / (0 ) — / t (0 ) = iii'O) — / —-~-dz. I t remains to estimate the 

27T'i Jp z 
integrand on different parts of F. , 

a) if \z\ = R, Rez > 0 that is £ = Re™ wi th 0 € - - , - } we have 
7T 7T 

2 ' 2 

(3.5) 

And so, 

(3.6) 

!!(/*(*) - /(*))< I -(s-t)z F(s)ds 

Jo 
e-*zF(s + t)ds < 

M 
R cos 6 

z 
R? 

= 2 cos 6» 
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There is a unique a = 1 + 
{R-W 

A 2 

(3.7) \h(z)\ < 1 + 
e'1 

A 2 - £ 2 

A 2 

so that 

(R- | A | ) 2 ; A 2 - e 2 

And. by (3.5), (3.6) and (3,7) we have that: 

• 2a cos 9 = 2a cos 6 

(3/8) 
H{z) 

Ke z > 0 

dz 
27rMo;,. ,. 

< Ml 
b) I f \z — iA| = e, Rez > 0, 2 = iX + ee'e and 6 6 { - '—) we have 

7T 7T 

(/CO - /*(*)) 
J.z etz j °°e-aee«> (e~i\s 

And letting G(s) = / e~iXuF(u)du, we obtain: 

» ( / ( * ) - / « ( * ) ) e i2[ 

(3.9) oo 

< 

cos ( 

And since 

(3,10) 

and 

(3,11) 

4A2 

\h(z)\ ^ T9 9 ' c o s # 
A" — e"5 

1 < 1 

|*| ~ |Aj - e 

we obtain by (3.9), (3.10) and (3.11) that: 

(3.12) 

where B — 

II(z) 

Rez>0 
< £ 7 7 ^ ^ — — i I N I = M™M/3\\X\ 

( A 2 - e 2 ) ( | A | - e ) 

( A 2 - e 2 ) ( | A | -e) 
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c) Let's consider, now, the contour ^ U T4. As 0 ^ L3 U r4 the 

function MilZif l j s bounded for z € 1̂  U F4 and also, as 1^ and T4 
z 

are lying entirely within D n {Re 2: < 0} i t follows that, for z € 1̂ 3 U V^, 
l im etz = 0 and, finally, by the bounded convergence theorem we have, 
t—>00 

/' h(z)f(z)etz 

l im / " A - L A - i — ^ = 0, 2 = 1,2. But ft is an entire function therefore (3.13) 
h(z)ft(z)e tz 

-dz 
r 3 u r 4 

W » / t ( * ) e tz 
= R 

Rez<0 

-dz + 
h(z)ft(z) 

| * - U | = e 
He z<0 

-dz 

For 2 == i?e l f / w i th 8 € ( 7̂ ) ) 1 , v e have, as in (a), that: 

M 
~ R\cos9\"V" 

And i t results that 

(3.14) 
h^)ft{zytz 

z\--R 
Rtz<0 

-dz < 
2nMa 

R 

For \z — i\\ — e, Rez < 0, that is z = iA + ee1 6 and 0 e i - , 3 - ) we have 

similarly to (b) that: 

(3.15) M M i l ^ < 327reM/?||a;|| 
Z — i\\ — E 
Re. z<0 

Therefore, taking into account (3.8), (3.12), (3.13), (3.14) and (3.15) we 
obtain: 

(3.16) | | / ( 0 ) - / f ( 0 ) j | < - L . 2 
2ixMa 

\y\\ + 327reM/3||ai 

And final.'iy, 

(3.17) 11/(0) - / t ( C 0 | | < 2 ^ | | y | | + 32eM/3\\x\\ 

But as | | / t(0) - / (0 ) | | = l l T ^ A - 1 ? / ! ! , t > 0 and since R > 0 can be chosen 

arbitrarily large and e arbitrarily small, i t results that l im T(t)A xy 
t—»00 

= 0 
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!A| 
x. I t rermains to show that has where y = 

dense range in X. 

If, by the contrary, we suppose that 1 e a r (T {^^j^j * n e n ^v t ' a e 

Spectral Mapping Theorem, i t results that 3n 6 N so that A n = m|A| G 
ar(A). 

But as crp(A*) — crr(A), then ar{A) f l iJR, — 0 so that we arrived to a 

contradiction, that means that is dense in X and we have: 

l im | |T(i)w| | = 0 for any u> G D(A). Since D(A) is dense in X i t results 
i—>oo 
that l im | | T ( i U i | = 0 for any x G X. 

t—>oo 
I n the case when a (A) n iHt = 0, things are much more simplier. It 's 

eirough to take: F(t) — T(t)x, for any x G X and i > 0. Observe that 
\\F(t)\\ < M\\x\l where M = sup | |T( i ) | | < oo. 

i>0 

And using the same notations as in the precedent case we obtain that: 

\\T(t)y\\ = ll/t(0) - / (0 ) | | for any y G D(A) and t > 0. 

In order to study the behaviour of | |/t(0) — / (0 ) | | as t —> oo we estimate the 
integral / ^—^-dz, where H is a holomorphic function in the interior of a 

Jr z 
domain wi th boundary V — Pi U P2 and is defined by 

f z 2 \ 
H(z) —• ( 1 + j e * z [ft(z) — f{z)]. And F is a contour in an open set 
D D {z | Rez > 0} where / has a holomorphic extension and consists of: 

P x = {\z\ = R\Rez>$}i ReM% 

and J?2 a smooth path joining iR to —ii? and lying entirely in D except the 
endpoints. 

By estimating the integrand on Pi and respectively on Y2 we finally 
obtain that: 

(3.18) I I M o ) - / ( o ) | | < ~ H . 

I t easily results that T is strongly stable. 

4 An application to the stability theorem 

In the following, let us consider a bounded Co-semigroup T — (T(t))t>o 
with generator A, on a reflexive Banach space X. 
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Then by Jacobs-Glicksberg-de Leeuw Theorem [13] the space X splits 
into two closed T(i)-invariant subspaces X — Xo © Xr for all i > 0. 

XQ is called the irreversible part of X and is defined as: 

XQ -= {x 6 X | 0 is a cluster point for the weak topology of {T(t)x}t>o} 

Xr is; the reversible part of X and is equal wi th 

For each t > 0, let us denote by Tb(i)> the restriction of T(t) to Xo and by 
Tr(t), the rest:riction of T(t) to X R . I t is already proved that (Tb(i))t>o a n d 
(T r (t)) t>o are also bounded Co-semigroups with generator AQ and respec
tively Ar. 

T h e o r e m 4 . 1 . Let X be a reflexive H.I, Banach space and T = (T(t))t>o 
a bounded Co-semigroup with generator A. Then % = (?o(£))t>o is always 
strongly 'stable. 

Proof . First let us remark that relfexive H . I . Banach spaces exist (see, for 
instance, Gowers' example [7]). 

By the definition of XQ, i t results that AQ has no eigenvalues on the 
imaginary axis, ap(Ao) n iJEl = 0. 

Let us consider A G or(Ao). As (AI - ÂQ)XQ ^ XQ, by Hahn-Banach 
theorem, i t results there exists / G XQ wi th / ^ 0 so that 

Xr — span{œ G D(A) \ 3iX G iIR, Ax — iXx} 

< (XI - AQ)X, f >~ 0, for any x G XQ 

and. i t follows that 

< x, (xr - A*0)f > = 0, x G X 

And finally 
4* ./in y = a / 

The?:efore, A G cr.p(Ag) and so 

(4.1) ^•(Ao) ç op(A^) 

On the other, hand, we have [2.3;2] 

(4.2) cXp(Ao) Dili Ç a r ( A 0 ) 
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By (4.1) and (4.2) it results 

(4.3) ap(Aa) niTRC av{Al) 

As X is reflexive, applying (4.3) to AQ we have 

(4.4) op{A*Q) n m C ap(A^) = ap(A0) 

And (4.3), (4.4) imply 

CTp(AQ) n ilR = crp(A0) n i lR = 0 

Suppose, now, that An is an infinite subspace. As X is an H . I . space, it 
results that also XQ is an H. I , space. Thus To is a bounded Co-semigroup 
defined on an H . I . Banach space and the adjoint of its generator has no 
eigenvalues on the imaginary axis,. By Theorem 3.2 we may conclude that 
TQ is strongly stable. 

In the case XQ a finite dimensional space, then i t easily results the 
same conclusion. 

Remark 4 . 1 . I f AQ is unbounded then T is strongly stable on a finite 
codimension subspace of X. 
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