
İstanbul Üniv. Fen. Fak. Mat. Der. 60 (2001), 55-72 

ON SOME W E A K FORMS OF 
C O N T I N U I T Y F O R 
MULTIFUNCTIONS 

by 
Valeriu POPA and Takashi NOIRI 

AMS Subject Classification: 54C08; 54C60. 
Key words and phrases: mjjf-open, m-continuous, weakly m-continuous, 

multifunction.. 

Abstract 

The authors define a multifunction F : (X,mx) —•' (Yta) to be 
weak).}/ m-continuous i'i for each point x € X and any open sets Gi, Gi 
of Y such that F(x) c Gi and F(x) f) G<i ^ 0, there exists an mx-
open set, U of X containing x such that F(u) <Z Cl(G'i) and F(u) D 
C1(G12) 7̂  0 for every u e U. They obtain several characterizations 
and properties concerning weakly m-continuous multifunctions. 

1 In t roduc t ion 

Semi-open sets, preopen sets, cv-open sets, ',/3-open sets and <5~open sets play 
an import ant role in the study of generalizations of continuity in topological 
spaces. By using these sets several authors introduced and studied vari­
ous typefs of weak forms of continuity for functions and multifunctions. In 
1961, M.arcus [15 J introduced the notion of quasicontinuity in topological 
spaces, Banzaru. [6] and Banzaru and Criva$ [7] extended it to the notion 
of quasicontinuity for multifunctions. The present authors introduced and 
studied weakly quasi-continuous multifunctions [201), weakly precontinuous 
multifunctions [35] and weakly ^-continuous multifunctions [36]. These 
multifunctions have similar properties. The analogy in their definitions 
and results suggests the need of formulating a unified theory. 
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In this paper, in order to unify several characterizations and proper­
ties of weakly quasi-continuous multifunctions, weakly precontinuous mul-
tifunctions and weakly /3-continuous multifunctions, we introduce a new 
notion of weakly m-continuous multifunctions denned on the domain sat­
isfying minimal conditions. 

2 Preliminaries 

Let (A', r ) be a topological space and A a subset of X, The closure of A 
and the interior of A are denoted by Cl(A) and Int(A), respectively. A 
subset A is said to be regular closed (resp. regular open) if Cl(Int(A)) = A 
(resp. Int(Cl(A)) = A). 

Definition 2.1 A subset A of a topological space (X, r) is said to be a-
open [19] (resp. semi-open [13], preopen [16], ¡3-open [1] or semi-preopen 
[3]) if A c: Int(Cl(Int(A))) (resp. A c Cl(Int(A)). A C Int(Cl(A)),A C 
Cl(Int(Clf A)))). 

A su'oset A is said to be 8-open [42] if for each x € A there exists a 
regular open set G such that x € G C A. A point x 6 A is called a 
8-clusk-ir point of A if Int(Cl(V))nA ^ 0 for every open set V containing 
x. Tb/3 set of all '̂-cluster points of A is called the 8-closure of A and is 
denoted by C15(A). The set {x e X ; x 6 U C A for some regular open set 
U of X} is called the 5-interior of A and is denoted by Intj(A). 

Definit ion 2.2 A subset A of A is said to be 5-preopen [41] (resp. 5-semi-
open [22]) if A C Int(CLj(A)) (resp. A C Clpnt^A))). 

The family of all semi-open (resp. preopen, a-open, /3-open, i-preopen, 
6 -semi-open) sets in X is denoted by SO(X) (resp. PO(X), a(X), P(X), 
<5PO(A), <5SO(*)). 

Definition 2.3 The complement of a semi-open (resp. preopen, a-open, 
/9-open, (5-preopen, 5-semi-open) set is said to be semi-closed [8] (resp. pre-
closed [10], a-closed [17], f3-closed [1], 6-preclosed [41], 8-semi-closed [22]). 

If A is both semi-open and semi-closed, then it is said to be semi-regular 
[9], The set of all semi-regular sets of X is denoted by SR(A). 
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Definition 2.4 The intersection o'f all semi-closed (resp, preclosed, en­
closed, /3-closed, 5-preclosed, <5-seuii-closed, semi-regular) sets of A' con­
taining A is called the semi-closure [8] (resp. preclosure [10], a-closure [17], 
(3-closure [2], 6-preclosure [41], 5-semi-closure [22], sem.i-6-closure [18]) of A 
and is denoted by sCl(A) (resp. VC\{A), aCl(A), ,8G1(A), pCbj(A), sCl 5(A), 
sCLKA)). 

Definition 2.5 The union of all semi-open (resp. preopen, cv-open, ft-
open, 5-preopen, <5-semi-open, semi-regular) sets of X contained in A is 
called the semi-interior (resp, preinterior, a-interior, ¡3-interior, 5-prein-
terior, 8-semi-interior, semi-Q-interior) of A and is denoted by slnt(A) 
(resp. plnt(A), alnt(A), pint (A), p l n t ^ l ) , smt^A), sInt 0(A)). 

Let (X, r ) be a topological space. A point x G X is called a 9-cluster 
of a subset A point of A if Cl(V) (1 A ̂  0 for every open set y containing 
x. The set of all ̂ -cluster points of A is called the 6-closure [42] of A and 
is denoted by Cl^A) . If A — C l^A) , then A is said to be 0-closed. It is 
shown in [42] that C1(V) =Clg(V") for every open set V and C\g(S) is closed 
for every subsets' of X. 

Throughout the present paper (A, r ) and (Y, a) always denote topolog­
ical spaces and F : ( X , r ) —> (Y,a) presents a multivalued function. For 
a multifunction F : ( X , r ) —> (Y, c), we shall denote the upper and lower 
inverses of a subset B of a space Y by F+(B) and F~(B), respectively, 
that is, 

F+(B) = {x G X : F{x) c B} and F~{B) = {x G X : F(x) n B ¿ 0}. 

Let V(Y) be the collection of all,nonempty subsets of Y, For any 
set V of Y, we denote V+ — {B 6 7->(Y) : B C V} and V~ = { 5 G 
P(Y) : S D K ^ 0} [40]. 

Definition 2.6 A multifunction F ; (A, r ) —> (Y, cr) is said to be quasi-
continuous [6], [7], [23] (resp, precontinuous [33], a-continuous [29], /3-
continuous [31]) if for each point re G A and each open set Vi, V% of y such 
that F(x) G Vj4" fl Vlf", there exists a semi-open (resp. preopen, a-open, 
/3-open) set £7 of X containing x such that F(u) G V^nVg" for every u G £7. 

Definition 2.7 A multifunction F : (A, r ) —> (Y, a) is said to be weakly 
quasi-continuous [20] (resp. weakly precontinuous [35], weakly P~ continuous 
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[31]) if for each point x 6 X and each open set Vi,V2 of Y such that 
F(x) 6 Vy" f l Vf, there exists a semi-open (resp. preopen, /?-open) set U 
of X containing a; such that F(u) 6 (Cl(Vi)) + f l (C1(V2))_ for every ueU. 

3 Characterizations 

Definition 3.1 A subfamily mx of the power set V{X) of a nonempty set 
A is called a minimal structure (briefly m-structure) on A if 0 € mx and 
A € mx- Each member of mx is said to be mx-open and the complement 
of an mx-open set is said to be mx-closed, 

Remark 3.1 Let (A, r ) be a topological space. Then the families r, 
SO(A), PO(X), a{X), 0{X), <5PO(X), SSO(X) and SR(A) are all re­
structures on A . > 

Definition 3.2 Let A be a nonempty set and mx an m-structure on X, 
For a subset, A of A , the mx-closure of A and the mx-interior of A are 
defined in [14] as follows: 

(1) mx-Cl(A) - n{F • A c F, X - F 6 mx}, 
(2) mx-Int(A) = U{t7 : i / c i , i / e mx}. 

Remark 3.2 Let (A, r ) be a topological space and A a subset of A . If 
m x - T (resp. SO(X), PO(X), a(X), f3(X), <5P0(X), 8SO(X), SR(A)), 
then we have 

(1) mx-Cl(A) =, C1(A) (resp. 301(A), pCl(A), aCl(A), ^Cl(A), P Q a ( A ) , 
sCbj(A), s eCl(A)), 

(2) mx-Int( / l ) = Int(A) (resp, slnt(A), plnt(A), a;Int(A), plnt(A), 
pInt ( 5(A) )sInt5(A), s#Int(A)) . 

Lemma 3.1 (Maki [14]). Let X be a nonempty set and mx a minimal 
structure on X. For subsets A and B of X, the following properties hold: 

(1) mx

J3l(X - A) = X - mx-Int(A) and mx-Int(X - A) = X - mx~ 
01(A), 

(2) If {X - A) € mx, then mx-Cl(A) = A and if A 6 mx, then rax-
Int(A) = A, 

(3) mx-C\{1ll) - 0, ?nx-Cl(X) - X, mx-lnt(0) = 0 and mx-Int(X) = 
X, 

(4) If A C B, then mx-Cl(A) c mx-Cl(B) and mx-Int(A) c mx-
Int(S), 
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(5) A C mx-Cl(A) and mx-lnt(A) C A, 
(6) mx-Cl(mx-G\(A)) = rax-Cl(A) and mx-Int(mx-Int(A)) = mx-

Int(A). 

Definition 3.3 A multifunction F : (X,mx) —» (Y, cr)> where X is a 
nonempty set with an m-structure nix, is said to be weakly m-continuous 
(resp, m-continuous [39]) at a point x 6 X if for each point x € X and each 
open sets Vi, V2 of Y such that F(x) 6 n V2~, there exists ?7 € mx con­
taining z such that F(u) e (01(^1))+ n (C1(F2))_ (resp. F(u) € V\+ n V2~) 
for every u £ U. 

Remark 3.3 Let F : (X, r ) —> (Y, c) be a multifunction. 
(1) If mx = SO(X) (resp. PQ(X), a(X), /3(X)) and F : (X,mx) 

(Y, cr) is ra~continuous, then F is quasicontinuous (resp. precontinuous, a-
continuous, /3-continuous), 

(2) If mA- = SO(X) (resp. PO(X), > (X) ) and F ; (X,mx) -> (Y,<r) 
is weakly -m-continuous, then F is weakly quasicontinuous (resp. weakly 
precontinuous, weakly /^-continuous). 

Theorem 3.1. For a multifunction F : (X ,mx) —• (Y,cr), i/?,e following 
properties are equivalent: 

(1) F is weakly m-continuous; 
(2) F+(G1)nF-{G2) C 77ix-Int(F+(Cl(Gi)) nF - (C l (G 2 ) ) ) for every 

open sets Gi, G2 of Y; 
(3) mx-C\(F~{lr&(Kl))UF+(Int(K2))) C F - ( A i ) U F + ( A 2 ) for every 

closed sets K\, K2 of Y; 
(4) mx-Cl(F~(Int(Cl(5i))) U F+(Int(Cl(B 2)))) C F-(Cl(Bi) ) U 

F+(C1(B2)) for every subsets BitB2 of Y; 
(5) F+(Int(J3i)) n F"(Int(£? 2)) *C mx-Int(F+(Cl(£i)) n F-(C1(£ 2 ) ) ) ) 

for every subsets Bi,B2 ofY; 
(6) mx-CA(F-{Gi) U F+(G 2 ) ) C F " (Cl(Gi)) U F 4 '(C1(G 2)) for every 

open sets G\, G2 of Y. 

Proof, (1) (2): Let G\, G 2 be any open sets in Y such that x 6 
F+{Gi) n F ~ ( G 2 ) , Then F (x) 6 Gf D Go" and hence there exists t/ 6 mx 
such that xeU C F+(Cl(Gi)) n F~(C1(G 2)). Since U €, mx> we haves e 
mx-Int(F+(Cl(Gi)) n F~(C1(G 2))). 

(2) ---> (3): Let K\^K% be any closed sets in Y. Then, Y — K\ and 
Y - J<2 are open sets in Y and by (2) and Lemma 3.1, we have 
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X - (F-(KX) U F-(K2)) = (X - F-(Ki)) n (X - F+(tf 2)) = 
F + ( y - A.i) n F ~ ( Y - v2) c mx-

Int(F+(Cl(Y - ].<!)) n F - ( c i ( y - tf2))) - mx~ 
Int[(X - F-(Int(Ki)) n (X - F+(Int(tf 2 )))] - mx-

Int(X - [F - ( In t (# i ) ) U F+(Int( tf 2 ))]) . Therefore, we obtain 
m x - C l ( F - ( I n t ( A i ) ) U F+(int(JA2))) C F - ( # i ) U F+(K2). 

(3) =» (4):Let Bi , .B 2 be any subsets of Y. Then Cl(J5i), Cl (£ 2 ) are 
closed sets of Y and by (3) we obtain mx-Cl(F-(Int(Cl(jBi))) U 
F+(Int(Cl(B 2)))) C F"(Cl (Bi) ) U F+(C1(B2)). 

(4) => (5): Let Bi,E!2 be any subsets in Y. Then by (4) and Lemma 
3,1 we have 
F - ( Int (5i ) ) n F+(Int(Bu)) = X - [F+(Cl(y - Bi)) U F " ( C l ( y - B2))} C 

X - mx-Cl (F + ( In t (Cl (y - U F - ( Int (Cl (Y - B2)))) = 
X - mx-Cl (F+(F - Cl(Int(Bi))) U F " ( Y - Cl(Int(£ 2)))) = 

X - m A ' -Cl[(X - F ' -(Cl(Int(Si)))) U (X - F+(Cl(Int(£ 2 ))))] = 
X - mx-Cl(X - [F-(Cl(Int(J3i)))) n F+(Cl(Int(B 2)))]) = 

' mx-Int(F-(Cl(Int(.B 1))) n F+(Cl(Int(E 2)))). 
Thus, we obtain F+(Int(Bi)) n F"(Int(i? 2)) C mx--Int(F + (Cl(£i)) n 
F-(C1(.S2)))). 

(5) =?• (2): This is obvious, 
(2) (1): Let Gx,, G2 be any open sets of Y such that F(x) 6 G^ i~lG2 . 

Then x e F+(Gi) D F~{G2) C mx-Int(F+(Cl(Gi)) n F~[C\[G2))). Then 
there exists U € such that x <e U C F + ' (Cl(Gi)) nF~(Cl(G 2 ) ) . There­
fore, F(«) C Cl(Gi) and F(«) n C1(G2) ^ 0 for every ueU. Hence F is 
weakly m-continuous. 

(4) =>• (6): Let G i , G 2 be any open sets of Y. Then we obtain mx~ 
C1(F~(G!) UF+(G 2 ) ) c mx-Cl(F-(Int(Cl(Gi)))UF +(Int(Cl(C?2)))) C 
F~(Cl(Gi ) )UF+(Cl(G 2 ) ) . 

(6) = 3» (2): Let G'i, G 2 be any open sets of Y. Then we have 
F+(Gi) n F"(G 2 ) C F+(Int(Cl(Gi))) n.F-(Int(Cl(G 2))) = 

X - [F-(C1(Y - Cl(Gi))) U F+(Cl(y - C1(G2)))1 c 
X - rnx"Cl[F-(y - Cl(Gi)) U F+{Y - C1(G2))] = 

mx-Int(F+(Cl(Gi)) D F-(C1(G 2))). 
Therefore, we obtain F + (Gj . )nF~ (G 2) C mx-Int(F+(Cl(Gi))nF-(Cl(G 2 ))) . 

Theorem 3.2 For a multifunction F : (X, mx) —> (y, a), i/ie following 
are equivalent: 
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(1) F is weakly m-continuous; 
(2) m*-Cl(F-(Int(Cl0(Bi))) U F+(Int(Cl e(B 2)))) C F-(Cle(£i ) ) U 

F + (Cl0(B 2 )) for every subsets B\t B2 of Y; 
(3) m x -Cl (F-( In t (Cl (Bi) ) ) U F+(Int(Cl(B 2)))) C F-(C1 0 (B 1 )) U 

F + (Cle(B 2 )) for every subsets B\,B2 of Y; 
(4) m x-Cl(F-(Int(Cl(G?i))) U F + (Int(Cl(G 2 )))) C F-(Cl(Gi)) U 

F +(C1(G 2)) for every open sets G i , G 2 of Y; 
(5) m,Y-Cl(F-(Int(Cl(Vi))) U F + (Int(Cl(y 2 )))) C F-(Cl(Vi)) U 

F +(01(^2)) for every preopen sets Vx, V2 of Y; 
(6) m x -C l (F - - ( In t (A 1 ) )UF + ( In t (K 2 ) ) ) C F~{Ki)UF+(K2) for every 

regular closed sets K\, K2 of Y. 

Proof. (1) (2): Let B i , B 2 be any subsets of Y. Then Clfl(Bi) and 
Cle(B2) are closed in Y. Therefore, by Theorem 3.1 we obtain 

m x -Cl[F-( Int (Cl i , (B 1 ) ) )UF+(Int (Cl e (B 2 ) ) ) ] 
C F - ( C l e ( B 1 ) ) U F + ( C l e ( B 2 ) ) . 

(2) (3): This is obvious since C1(B) C C\e(B) for every subset B of 
Y. 

(3) ^ (4); This is obvious since 01(G) = Ckj(G) for every open set G 
of Y. 

(4) (5): Let V\,V2 be any preopen sets of Y, Then since Vi C 
Int(Cl(T/i)), we have 01(14) - Cl(Int(Cl(V5))) for i = 1,2. Now, set G* = 
Int(Cl(Vi)), then Gt is open in Y and C1(G0 = C1(V>), Therefore, by 
(4) we obtain mx-'C\(F~ (Int(G\(Vi))) U F+(Int(Cl(y 2)))) C F-(Cl(Vi)) U 
F+(Gl(V2)). 

(5) (6): Let K\,K2 be any regular closed sets of Y. Then, we 
have Int(Ki) e PO(Y) and Int( /f 2 ) 6 PO(Y) and hence by (5) mx-
Cl(F"-(Int(Ki)) U F+(Int(A- 2))) . = mjf-Cl(F-(Int(Cl(Int(tfi)))) U 
F+(In.G(Cl(Int(A-2))))) C F~(K\) U F+(K2). 

(6) =*> (1): Let G i , G 2 be any open sets of Y, Then Cl(Gi) and 
G\(G2) are regul ar closed sets of Y. Therefore, we obtain mx-Cl(F~(Gi) U 
F+(G ;'2)) C mx-Cl[F-(Int(Cl(Gi))) U F+(Int(01(G 2)))] C F-(Cl(Gi)) U 
F +(C!i(G 2))'. It follows from Theorem 3.1 that F is weakly m-continuous. 

Theorem 3.3 For a multifunction F ; (X,mx) —> (Y',cr), the following 
are eq uivalent: 

(1) F is weakly m-continuous; 
(2) mx-C:i(F~(Int(Cl(Gi))) U F+(Int(Cl(G 2)))) C F-(Cl(Gi)) U 

F+(C1(G2)) for every GUG2 E (5(Y); 
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(S) mx-Cl(F-(Int(Cl(Gi))) U F+(Int(Cl(G 2)))) C F'\C\{GX)) U 
F+(C1(G 2 )) for every Gu G 2 6 SO(Y). 

Proof. ( 1 ) (2) : Let G i , G 2 £ (3{Y). Then G* C Cl(Int(Cl(Gi))) 
and Cl(Gj) - Cl(Int(Cl(Gi))) for i = 1,2. Since Cl(Gi) and C1(G 2) are 
regular closed sets, by Theorem 3.2 we have mx-Cl(F~(Int(Cl(Gi))) U 
F+(Int(Cl(G 2)))) c -F~(Cl(Gi)) U F + (C1(G 2 ) ) . 

(2) => (3): This is obvious since SO(Y) C (3{Y). 
(3) =*• (1) : For any G £ PO(Y), C1(G) is regular closed and 01(G) 6 

S0(Y). Thenm A"-Cl(F-(Int(Cl(Gi)))UF-(Int(Cl(G 2)))) C F~(01(Gi))U 
F + (C1(G 2 ) ) , By Theorem 3.2, F is weakly m-continuous. 

Remark 3 .4 If F : (X, r ) —> (Y, a) a multifunction and mx — SO(X) 
(resp. 'PO(X), /3(X)),, then by Theorems 3.1-3,3 we can obtain characteri­
zations established in [20], [37] (resp, [35], [36]). 

4 Weakly m-continuity and /^-continuity 

Definition 4 . 1 A multifunction F : (X,mx) (Y, a) is said to be almost 
m-continuous if for each point x £ X and. each open sets G i , G 2 of Y 
such that F(x) € Gx D G j , there exists U € mx containing x such that 
F(u) CI Int(Cl(Gi)) and F(u) n Int(Cl(G 2)) ^ 0 for every u € C/. 

Rem ark 4 . 1 For a multifunction the following implications hold: 

m-continuity almost m-continuity loeafc m-continuity. 

Theorem 4 . 1 I / F : X -~> Y is weakly m-continuous and F(x) is open in 
Y for each point x € X, then F is almost m-continuous. 

Proof. Lex x 6 X and G i , G 2 be open sets in Y such that F(x) £ 
G'{C\G~2~. Since F is weakly m-continuous, there exists U £ mx containing 
x such that F(u) C Cl(Gi) and F{u) n C1(G 2) ^ 0 for every w € U. 
Since F(x) is open for each x £ A , F(u) is open and F(u) C Int(Cl(Gi)). 
Moreover, F(<u)nCl(G2) ^ 0 implies F(ii)nlnt(Gl(G 2)) ^ 0 for each u £ U. 
Therefore, F is almost m-continuous. 

Remark 4.2 hi F : ( A , T ) ~> (Y, a) a multifunction and mx - SO(A) 
(resp. PO(A' j , / 3 ( A ) ) , then by Theorem 4.3. we can obtain the results 
established in. [34] (resp. [32], [33]). 
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Definition 4.2 A subset A of a topological space (X, r ) is said to be 
(1) a-regular [11] if for each a £ A and each open set U containing a, 

there exists an open set G of X such that a £ G C C1(G) C U, 
(2) a-almost regular [12] if for each a £ A and each regular open set U 

containing a, there existe an open set G of A such that a £ G C Cl(G) C U, 
(3) a-paracompact [40] if every X-open. cover of A has an A-open re­

finement which covers A and is locally finite for each point of A . 

Lemma 4.1 (Kovacevic [11]) If A is an a regular a-paracompact set of 
a topological space (X,r) and U is an open neighborhood of A, then there 
exists an open set G of X such that A C G C C1(G) C U, 

Lemma 4.2 (Popa, and Noiri [31]) If A is an a-almost regular a-paracom­
pact set of X and \'j is a regular open neighborhood of A, then there exists 
an open set G of X such that A C G C C1(G) C U. 

Lemma 4.3 (Popa [26]) / / A is an a-almost regular set of a topological 
space ( A , r ) and U is a regular open set such that U D A ^ 0, then there 
exists an open set G of X such that A n G ̂  0 and C\(G) c U. 

Lemma 4.4 (Popa [27]) If A is an a-regular set of a topological space 
(A, r ) and U is a regular open set such that U fl A ̂  0, for every open set 
D which intersect A, there exists and open set DA such that A D DA 0 
and CI (DA) C D, 

Theorem 4.2 A multifunction F ; (X,mx) ~> (Y, a) is almost m-con­
tinuous if and only if F+(Gi) fl F ~ ( G 2 ) = mx- In t (F + (Gi ) D F~(G2)) for 
every regular open sets Gi , G 2 ofY. 

Proof. Necessity. Let G i , G 2 be regular open sets of Y and x £ 
F+(Gi) n F~(G2). Then there exists U £ mx containing x such that 
F(u) C Gi and F(u) n G2 ^ 0 for every u £ U. Therefore, we have x £ 
U C F ' f (Gi) n F-(G2) and hence .F+(Gi) D F~{G2) C ra^-Int^íGi) n 
F~(G-¿)). By Lemma 3.1, it follows that F+{Gi) n .F~(G 2 ) = ?nA-
Int(F + (Gi )nF- (G 2 ) ) ." 

Sufficiency. Let Gi , G 2 be any open sets of Y such that F(x) £ G 4"nG 2'. 
Then Int(Cl(Gi)), Int(Cl(G 2)) are regular open sets of Y and 

F(x) £ (Int(Cl(Gi)))+ n (Int(Cl(G 2)))-. 
By laypothesis, we have 
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x E F+(Int(Cl(Gı))) nF-(Int (Cl(G 2 ) ) ) = mx-
Jint(F +(Int(Cl(Gı))) n F-(Irı t(Cl(G 2 )))) . 

There exists U E mx containing x such that F(u) C Int(Gl(Gi)) and 
F(u) n Int(Cl(G;a)) =¿ 0 for every u E U. Thus F is almost m-continuous. 

Theorem 4.3 If F : (X,mx) -* (Y,<r) in weakly m-continuous and F(x) 
is an ct-almoat regular a-paracompact set of Y for each point x E X, then 
F is almost m-continuous. 

Proof. Let V; u V 2 be regular open sets of Y and x E F+{V{) Pi F - (V2) . 
Then F(x) C V\ and F(x) n V2 ̂  0. Since F(s) is a-almost regular a-
paracompact, by Lemma 4.2 there exists an open set W\ such that F(x) C 
Wi C Cl(î'Kı) C V\. By Lemma 4.3, there exists an open set W 2 of Y such 
that F(x) D W'2 ¥'• 0 and Cl^M^) C V 2 . Since F is weakly m-continuous, 
there exists U E mx containing x such that F(u) C Cl(Wi) C Vi and 
F(u) n C1(W2) ^ 0 for every u € İ7. Therefore, we have x E U. C F+(Vİ) n 
F-(V2). Hence F+(Vi) n F~ {V2) C m x - In t (F+(V 1 ) n F " ( y 2 ) ) . By Lemma 
3.1, F+(Vi)nF-(V2) = mx-Int(F +(Vi)nF~(V;2)). It follows from Theorem 
4,2 that F is almost m-continuous. 

Remark 4.3 Let F : ( X , r ) -> (Y,<r) be a multifunction. If mx = SO(X) 
(resp, PO(X), P(X)), then by Theorem 4.3 we obtain the results estab­
lished in [34] (resp, [35], [36]). 

Theorem 4.4 For a multifunction F : (X, ?nx) —> (V.a) s?¿c/i í/iaí F(ÍC) 
is an a-regular a-paracompact set of Y for each point x E X, the following 
are equivalent: 

(1) F is m-continuous; 
(2) F is almost m-continuous; 
(3) F is weakly m-continuous. 

Proof. We show only the implication (3) => (1) since the others are 
obvious. Suppose that F is weakly m-continuous. Let x E X and Vi, V 2 be 
any open sets of Y such that x E F + ( V ı ) f) F'"(V2). Then F(x) C Vi and 
F(x)i~)V2 ^ 0. Since F(x) is a-regular a-paracompact, by Lemmas 4.1 and 
4,4 there exist open sets Wu W2 of Y such that F(x) C W\ C C\{W\) C Vi, 
F(x) n W2 ^ tf) and Q\(W2) C V 2 . Since F is weakly m-continuous, there 
exists U E mx: containing x such that F(u) C Cl(Wi) and F(u)(~)Cl(W2) ^ 
0 for every u E U. Then F(u) c Vi and F(u) n V;¡ ^ 0 for every u E U. 
This shows bhat F is m-continuous. 
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Remark 4.4 Let f : (X, r ) —• (F, a) be a multifunction. If mx ~ PO(X) 
(resp, /3(X)), then by Theorem 4.4 we obtain the results established in [21] 
(resp. [36]). 

Theorem 4.5 If F ; (X, mx) —> (F , cr) is a closed valued multifunction 
and (F , A) is a normal T\ space, then the following are equivalent: 

(1) F' is mi,-continuous; 
(2) F is (dmost m-continuous; 
(3) F is weakly m-continuous. 

Proof, As in Theorem 4.4, we prove only the implication (3) (1). 
Suppose ôhat F is weakly m-continuous, Let x e A and Gi,G2 be any 
open seta of Y such that F(x) 6 G4" D G 2 . Since F(x) is closed in F , 
by t'he normality of Y there exists an open set, D of A such that F(x) C 
D c; C1(D) C Gi, Since every normal T\ space is T 3 and F(z) n G 2 =¿ 0, 
thfare exists an open set E of Y such that F n F(x) ^ 0 and 01(E) C G%. 
S;mce F' is weakly m-continuous and F(x) € D+ f l B " , there exists [7 € mx 
containing a; such that F(u) C Cl(£>) and F(u)f]Q\{E) =¿ 0 for every ueU. 
Therefore, we obtain F(u) C G\ and F(it) 0 G 2 A 0 for every u € 17. This 
shows that F is m-continuous. 

Remark 4.5 Let F : ( X , r ) -» (F,CT) be a. multifunction. If mx = PO(A) 
(resp. /3(A)), then by Theorem 4.5 we obtain the results established in [21] 
(resp. [36]). 

5 Properties of weakly rn-continuous multifunc-
tions 

Fo r a multifunction F : X - + (F,cr), by 01(F) : A -> (F,CT) [5] we denote 
a multifunction defined as follows: Cl(F)(a;) = Cl(F(a;)) for each a; € A. 
Similarly, we denote sCl(F) : A -> (F,cr) [23], pCl(F) : X -* (Y,cr) [25], 
aCl(F) : A -> (F , A) [28], /301(F) : A -» (F,<T) [32], 

Lemma 5.1 J /F : (A, m,x) (Y, c) ¿s a multifunction such that F(x) is 
a-regular and a-paracompact for each x € A , then 

(1) G+(V) = F+(V") for each open set. V ofY, 
(2) G-{K) = F~(A) for each closed set K ofY, 

where G denotes 01(F), pCl(F), sCl(F), aCl(F) or /301(F), 
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Proof. (1) Let V be any open set of Y and x £ G + ( V ) . Then G{x) C V 
and F(x) C G{x) C V. We have x E F+(V") and hence G+(V) C F+(V). 
Conversely, let x E F+(V), Then we have F(x) C V* and by Lemma 
4.1 there exists an open, set H of Y such that F(x) C H C CI(ií) C V. 
Since G(a;) C Cl(F(:c)), G(x) C V and hence x E G+(V). Thus we obtain 
F+(V) C G + ( V ) . Therefore, G+(V) = F + ( V ) . 

(2) This follows from (1) immediately. 

Lemma 5.2 For a multifunction F : (X,mx) —> (Y, a), '¿/i-e following 
properties hold: 

(1) G~(V) = F-(V) for each open set V ofY, 
(2) G+(K) =• F+(K) for each closed set K ofY, 

where G denotes Cl(F), pCl(F), sCl(F), aCl(F) or fid(F). 

Proof. (1) Let V be any open set of Y and x £ G~(V). Then G(x) n 
V -f- 0 and hence Fix) n V ^ 0 since V* is open. We have x E F"(V) 
and hence G'(V) C F~(V), Conversely, let x £ F~(V). Then we have 
0 ,¿ n V C G(a) n V and hence x E G~ (V). Thus we obtain F~ (V) C 
G - ( V ) . Therefore, J P - ( V ) = G ~ ( V ) . 

(2) This follows from (1) immediately. 

Theorem 5.1 Let F ; (X,mx) —* (Y, ex) be a multifunction such that 
F(x) is a-regular and a-paracompact for each x E X. Then the following 
properties are equivalent: 

(1) F is weakly m-continuous; 
(2) C1(F) is weakly in-continuous; 
(3) sCl(F) is weakly m-continuous; 
(4) pCl(F) is tueakly m-continuous; 
(5) aCl(F) is lueakly m-continuous; 
(6) /?C1(F) is weakly m~continuous. 

Proof. We put G = C1(F), pCl(F), sCl(F), aCl(F) or /3C1(F) in the 
sequel. 

Necessity. Suppose that F is weakly rn-continuous. Then it follows 
from Theorem 3.1 and Lemmas 5.1 and 5.2 that for every open sets V\ and 
V2 of Y, G+(Vi) n G ~ ( V 2 ) = F + ( V i ) n F-(y2) C m x -Int(F+(Cl(Vi)) n 
F-(C1(V2))) = m x-Int(G'+(Cl(Vi)) n G~ (C1(V 2))). By Theorem 3.1, G is 
weakly m-continuous, 

Sufficiency. Suppose that G is weakly rn-continuous. Then it follows 
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from Theorem 3,1 and Lemmas 5.1 and 5.2 that for every open sets V\ 
and V2 of Y, F+(Vi) n F~ (V2) = G+(Vi) nG~(V2) C m x -Int(G' + (Cl(Vi)) n 
G-(C1(V2))) - ?n A "Int(F + (Cl(F 1 ))nF--(Cl(F 2 ))). It follows from Theorem 
3,1 that F is weakly m-continuous. 

Remark 5.1 Let F : (X, r ) —> (Y, a) be a multifunction. For a multifunc­
tion F : (X,r/%x) -* (Y,a) and mx = PO(X) (resp. /3(A)), by Theorem 
5.1 we obtain the results established in [35] (resp. [36]). 

Definition. 5.1 Let A" be a nonempty set and mx an m-structure on X. 
For a subset A of A', the mx-frontier of A, m x -Fr(A), is defined as follows: 

mx-Fr(A) = mx-C\(A) n mx-C\(X ~ A). 

Lemma 5.3 (Popa and Noiri [37]) Lei X be a nonempty set with an m-
structum mx and A a subset of X, Then, x £ mx-Cl(A) if and only if 
U fl A A 0 for every U € mx containing x. 

Theorem 5.2 The set of all points x € A at which a multifunction F : 
(X,mx) —> (Y,a) is not weakly m-continuous is identical with the union of 
the mx-frontier's of the intersection of upper/lower inverse images of the 
closures of open sets containing/meeting F(x). 

Proof., Let s be a point of A at which F is not weakly m-continuous. 
Then there exist two open sets VI, V 2 of Y such that x E F + ( V i ) n F~(V2) 
'and Un(X- (F+(Cl(Vi))nF~(01(y 2 )))) A 0 for every U E mx containing 
x. By Lemma 5.3, x E mx-Gl(X - (F+(01(Vi)) fl F~(Cl(V2)))). On the 
other hand, we have x £ F + ( V i ) n F~(V2) C (F+(01(Vi)) n F-(C1(V 2)). 
Thus we obtain x e ?rt x-Fr(F+(Cl(Vi)) n F-(C1(V 2))). 

Conversely, suppose that F is weakly m-continuous at x E X and let 
Vi, V2 be any open sets of Y such that x £ F + (V1) n F~(V"2). Then by 
Theorem 3.1, we have x £ m x - In t (F + (01(Vi) ) n F-(C1(V 2))). Therefore, 
x i m x -Fr(F+(Cl(Vi)) n F~(C\(V2))). This completes the proof. 

6 Applications 

There are many modifications of open sets in topological spaces. Recently, 
many researchers are very interested in <5-preopen sets, <S~semi-open sets and 
6-open sets. The definition of 6-open sets as follows: A subset A of a topo­
logical space ( X , r ) is said to be b-open [4] if A C Int(Cl(A)) U Cl(Int(A)). 
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Amo.'tig sets in Definition 2,1 and these sets, the following relationships are 
known: 

open cx-open preopen =>• (5-preopen 
{I $ 

5-semi-open semi-open =4> 6-open =£• /3-open 

For each of modifications of open sets containing sets stated above, we 
cari define a new bype of weakly m~continuous multifunctions. For instance, 
we can define as follows: 

Definit ion 6.1 Let (X,T) and (Y,cr) be topological spaces, A multifunc­
tion F : (A, r ) —»• (Y, a) is said to be weakly super continuous (resp. weakly 
'5-precontinuous, weakly 8-semicontinuous, weakly b-continuous) if for each 
point a; € A and each open sets V\, V2 of Y such that F(x) € H y 2

_> 
there exists a <5-open (resp. '̂--preopen, <5~semi-open, fe-open) set U of (A, r ) 
containing a; such that F(u) € (Cl(Vi)) + n (C!l(I/2))" for every u e U. 

We can obtain their characterizations and properties from Sections 3 
and 4. For example, in case nix = SSO(X) by Theorem 3.1 we obtain 
characterizations of weakly 5-semicontinuous multifunctions. 

Theor em 6.1 For a multifunction F : (A, r ) —> (Y, a), the following prop­
erties are equivalent: 

(1) F is weakly delta-semicontinuous-continuous; 
(2) F+(G1)nF-(G2) C sInt a (F+(Cl(Gi))nF-(Cl(G 2 ))) for every open 

setsGuG2ofY; 
(3) &G\s(F-(Int(Ki)) U F + ( m t ( A 2 ) ) ) C F~(/A x) U F+(K2) for every 

closed sets K\,K2 of Y; 
(4) sCl 5(F-(Int(Cl(i? 1)))UF+(Int(Cl(i? 2)))) C F~(a (£ i ) )UF+(Cl (B 2 ) ) 

for every subsets Bx, B2 of Y; 
(5) F+(In t (S i ) )nF - ( In t (B 2 ) ) C sInti(F+(Cl(Bi))nF-(Cl(je 2)))) for 

every subsets B±,B2 ofY; 
(6) sCl 5 (F-(Gi)UF+(G 2 )) c F-(C1(G 1))UF+(C1(G 2)) for every open 

sets G\, G 2 of Y. 
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