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Abstract

The authors define a multifunction F : (X ,mx) — (Y, ) to be
weakly m-continuous if for each. point z € X and any open sets G, Gg
of Y such that F(z) C Gy and F(z) NGy # 0, there exists an mx-
open set U of X corntaining ¢ such that F(u) ¢ Cl(Gy) and F(u) N
Cl(C'y) # 0 for every w € U. They obtain several characterizations
and properties converning weakly m-continuous multifunctions.

1 Introduction

Semi-open sets, preopen sets, a-open sets,'3-open sets and §-open sets play
an import ant role in the study of generalizations of continuity in topological
spaces. Ily using ‘these sets several authors introduced and studied vari-
ous types of weak forms of continuity for functions and multifunctions. In’
1961, M.arcus [15] introduced the notion of quasicontinuity in topological
spaces. Banzarv. [6] and Banzaru and Crivay [7] exitended it to the notion
of quasicontinu’ity for multifunctions. The present authors introduced and
studied weakl'y quasi-continuous multifunctions {207}, weakly precontinuous
multifunctioris [35] and weakly (-continuous multifunctions [36]. These
multifunctio ns have similar properties. The analogy in their definitions
and results suggests the need of formulating a unified theory.
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In this paper, in order to unify several characterizations and proper-
ties of weakly quasi-continuous multifunctions, weakly precontinuous mul-
tifunctions and weakly (-continuous multifunctions, we introduce a new
notion of weakly ‘m-continuous multifunctions defined on the domain sat-
isfying minimal conditions.

2 Preliminaries

Let (X, 7) be a topological space and A a subset of X. The closure of A
and the interior of A are denoted by Cl(A) and Int(A), respectively. A
subset A is said to be regular closed (vesp. regular open) if Cl(Int(A)) = A
(resp. Int(Cl(A)) = A).

Definition 2.1 A subset A of a topological space (X, 7) is said to be a-
open [19] (resp. semi-open [13], preopen [16], B-open [1] or semi-preopen
[8]) if A ¢ Int(Cl(Int(A))) (resp. A C Cl(Int(A)), A C Int(ClL(A)), A C
Cl(Int(Cl( A)))).

A su'oset A is said to be §-open [42] if for each z € A there exists a
regular open set G such that x € G C A, A point z € X is called a
d-cluster point of A if Int(C1(V))NA # § for every open set V containing
z. The set of all d-cluster points of A is called the §-closure of A and is
denot.ed by Cls(A). The set {x € X : z € U C A for some regular open set
U of X7} is called the §-interior of A and is denoted by Ints(A).

Definition 2.2 A subset A of X is said to be §-preopen [41] (vesp. §-semi-
open [22]) if A C Int(Cls(A)) (vesp. A C Cl(Int;(A))).

The family of all semi-open (resp. preopen, a-open, -open, d-preopen,
4 -semi-open) sets in X is denoted by SO(X) (resp. PO(X), a(X), B(X),
dPO(X), §50(X)).

Definition 2.3 The complement of a semi-open (resp. preopen, a-open,
f3-open, d-preopen, §-semi-open) set, is said to be semi-closed [8] (vesp. pre-

closed [10}, a-closed [17], B-closed [1], §-preclosed [41}, §-semi-closed [22]).

If A is both semi-open and semi-closed, then it is said to be semi-regular
[9]. The set of all semi-regular sets of X is denoted by SR(X).
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Definition 2.4 The intersection of all semi-closed (resp. preclosed, o-
closed, B-closed, 8-preclosed, §-semi-closed, semi-regular) sets of X con-
taining A is called the semi-closure [8] (vesp. preclosure [10}, a-closure [17],
B-closure [2}, 6-preclosure [41], §-semi-closure {22], semi-0-closure [18]) of A
and is denoted by sCI(A) (resp. pCl{4), aCl(A), gCI1(A4), pCls(A4), sCls(A),
sClg(A4)).

Definition 2.5 The union of all semi-open (resp. preopen, c-open, [3-
open, d-preopen, §-semi-open, semi-regular) sets of X contained in A s
called the semi-interior (resp. preinterior, a-interior, §-interior, §-prein-
terior, 6-semi-interior, semi-G-interior) of A and is denoted by sInt(A)
(resp. pInt(A), alnt(A), gInt(A4), pInts(4), sInts(A), sInty(A)).

Let (X, 7) be a topological space. A point z € X is called a 0-cluster
of a subset A point of A if CL(V) N A # 0 for every open set V containing
z. The set of all §-cluster points of A is called the -closure [42] of A and
is denoted by Clg(A). If A = Clg(A), then A is said to be f-closed. It is
shown in [42] that C1(V') =Clg(V) for every open set V and Cly(S) is closed
for every subsetS of X.

Throughout the present paper (X, 7) and (Y, o) always denote topolog-
ical spaces and F': (X,7) — (Y,0) presents a multivalued function. For
a multifunction F': (X,7) — (Y, o), we shall denote the upper and lower
inverses of a subset B of a space Y by FT(B) and F~(B), respectively,
that is,

Ft(B)={z€ X :F(z) CE}and F~(B) = {z € X : F(z) N B # 0}.

Let P(Y) be the collection of all, nonempty subsets of Y. For any
set V of Y, we denote Vt* = {B € P(Y): B C V}and V- = {B €
CPY) BNV #£ 0} [40].

Definition 2.6 A multifunction F : (X,7) — (Y, 0) is said to be quasi-
continuous [6], [7], (23] (vesp. precontinuous [33], a-continuous [29], G-
continuous [31]) if for each point © € X and each open set Vi, Vs of ¥ such
that F(z) € V" NV, ", there exists a semi-open (vesp. preopen, a-open,
f-open) set U of X containing = such that &'(u) € V;" NV, for every u € U.

Definition 2.7 A multifunction F: (X,7) — (Y, 0) is said to be weakly
quasi-continuous [20] (resp. weakly precontinuous [35], weakly 3-continuous



[31]) if for each point x € X and each open set Vi,V3 of Y such that
F(z) € V{" N V,~, there exists a semi-open (resp. preopen, f-open) set U
of X containing x such that F(u) € (Cl(V1))* N (Cl(V3))™ for every u € U.

3 Characterizations

Definition 3.1 A subfamily mx of the power set P(X) of a nonempty set
X is called & minimal structure (briefly m-structure) on X if @ € mx and
X € myx. Bach member of myx is said to be mx-open and the complement
of an my-open set is sald to be mx-closed.

Remark 3.1 Let (X,7) be a topological space. Then the families 7,
SO(X), PO(X), a(X), B(X), §PO(X), 6SO(X) and SR(X) are all m-

structures on X. )

Definition 3.2 Let X be a nonempty set and mx an m-structure on X.
“For a subset, A of X, the my-closure of A and the my-interior of A are
defined in {14} as follows:

(1) mx-Cl(A) ={F:AC F,X - F€mx},

(2) mx-Int(A) =wW{U :U € A, U € mx}.

Remark 3.2 Let (X,7) be a topological space and A a subset of X. If
mx = 7 (resp. SO(X), PO(X), a(X), 8(X), §PO(X), §SO(X), SR(X)),
then we have

(1) mx-Cl(A) =: CI(A) (resp. sCL(A), pCYA), aCl(A), sC1(A), pCl5(A),
sCl;(A), sgCl(A)),

(2) mx-Int(A) = Int(A) (resp. sInt(4), pInt(4), alnt(A4), glnt(A),
pInts(A),sInts( A), spInt(4)) .

Lemma 3.1 (Maki [14]). Let X be a nonempty set and my a minimal
structure on X For subsets A and B of X, the following properties hold:
(1) mx-CU(X — A) = X —mx-Int(4) and mx-Int(X — A) = X —mx-
Cl(A), '

(2) If (X — A) € mx, then mx-Cl(A) = A and if A € mx, then mx-
Int(A) = A,

(3) mx-CUB) = B, mx-Cl(X) = X, mx-Int(B) = 0 and mx-Int(X) =
X,

(4) I A C B, then mx-Cl(A) ¢ mx-Cl(B) and mx-Int(A) C mx-
Int(B),
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(5) A C mx-Cl(A) and mx-Int(A) C A,
(6) mx-Cl(mx-Cl(A)) = mx-Cl(A) and mx-Int(mx-Int(A)) = mx-
Int(A).

Definition 3.3 A multifunction F : (X,mx) — (Y,0), where X is a
nonempty set with an m-structure my, is said to be weakly m-continuous
(resp. m-continuous [39]) at a point z € X if for each point z € X and each
open sets Vi, Vs of Y such that F(x) € V;* NV, , there exists U € mx con-
taining 2 such that F(u) € (CL(V;))t N (Cl(V2))~ (resp. F(u) € Vit NVy)
for every u € U.

Remark 3.3 Let F': (X,7) — (Y,0) be a multifunction.

(1) If mx = SO(X) (resp. PO(X), a(X), B(X)) and F': (X, mx) —
(Y, o) is m~continuous, then F' is quasicontinuous (resp. precontinuous, -
continuous, -continuous), ‘

(2) If mx = SO(X) (resp. PO(X), A(X)) and F : (X,mx) — (Y,0)
is weakly m-continuous, then F is weakly quasicontinuous (resp. weakly
precontinuous, weakly fB-continuous).

Theorem 3.1 For a multifunction F : (X,mx) — (Y,0), the following
properties are equivalent:

(1) F is weakly m-~continuous;

(2) FT(G1) N F~(G3) C mx-Int(FT(CLYG1)) N F~(CUGY))) for every
open sets G1,Go of Y; :

(8) mx-CY(F~(Int(F{1)) U FT(Int(K3))) C F~(K1)UFT(Ky) for every
closed sets K1, Ko of Y; '

(4) mx-ClF~(Int(Cl(B1))) U FF(Int(Cl(Bz)))) C F~(CYB1)) U
FT(CI(By)) for every subsets By, By of Y;

(5) FT(Int(B1)) N F~(Int(Bs)) € mx-Int(FT(Cl(By)) N F~(Cl(By))))
Jor every subsets By, Bs of Y

(6) mx-Cl(F~(G1) U F*(Gy)) € F~(CY(G1)) U F*(CIGy)) for every
open sets G1,Gq of Y. '

Proof. (1) = (2): Let G1,G3 be any open sets in ¥ such that z €
F*(G1) NF~(Gy). Then F(z) € G NG5 and hence there exists U € mx
such that z € U ¢ FY(Cl(G1)) N F~(Cl(G2)). Since U € mx, we havez €
7Tlx~1nt(F+(Cl(G1)) N Fv(CI(Gz))) ‘ .

(2) = (3): Let Ki, Ky be any closed sets in Y. Then, ¥ — K3 and
Y — K, are open sets in Y and by (2) and Lemma 3.1, we have
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X = (F=(Ky) U B~ (K2)) = (X — P~(K)) N (X = F*(K)) =
F+(Y - K.Al) NF(Y — Vz) Ccmx-

Int(FH(CIY —J$1)) N F~(CIY — K3))) = mx-
Int[(X — F~(Int(K1)) N (X — FH(Int(Ky)))] = mx-
Int(X — [F~(Int(K7)) U FT(Int(K32))]). Therefore, we obtain
mx-Cl(F~(Int(K1)) U FH(Int(K3))) C F~ (K1) U FH(Ky).

(3) = (4):Let By, Bz be any subsets of Y. Then Cl(B1), Cl(Bg) are
closed sets of Y and by (3) we obtain mx-Cl(F~ (Int(Cl(By))) U
F+(Int(01(32)))) C F~(Cl(By)) U F+(CI(B2)).

(4) = (5): Let Bj, B2 be any subsets in Y. Then by (4) and Lemma
3.1 we have _
F~(Int(B)) N F*(Int(By)) = X — [FH(CL(Y — B1)) U F~(CL(Y

X —mx-Cl(F (Int(Cl(Y B1))) U F~(Int(CL(Y — By)))) =
X — mx-Cl(F+(¥" - Cl(Int(B1))) U F~ (¥ — Cl(Int(By)))) =
X —mx-Cl[(X — F‘(Cl(Int(Bl)))} (X — FH(Cl(Int(By))))] =
X < m-CL(X -~ [F~(Cl(Tnt(B1))) 1 F* (CI{Tnt (B)))]) =
© mx-Int(F~ (Cl(Int(B;) ) N FT(Cl(Int(Bg))))-
Thus, we obtain 7T (Int(B1)) N Int(Bg)) C mx-Int(FT(Cl(B1)) N
P=(CI(By)))).
(5) = (2): This is obvious.

(2) = (1): Let G1,G be any open sets of Y such that F(z) e GfnGy.
Then z € FY(G1) N F'~(G2) C mx-Int(FT(Cl(G1)) N F~(Cl(Gs))). Then
there exists U € mx such that x &€ U c F(Cl(G1))NF~(Cl(Gy)). There-
fore, F(u) < Cl(G1) and F'(u) N Cl(G2) # B for every u € U. Hegce F is
wenkly m-~continuous.

(4) = (6): Let G1,G2 be any open sets of Y. Then we obtain mx-

— Bs))] C

)
F(

CUF~(G1) U F*(G2) < mx-CI(F~(Int(CI(G1))) U F*(Int(CI(Ga)))) <
F~(Cl(Gh)) U F*(Cl(Gy)).
(6) == (2): Let G1,G4 be any open sets of Y. Then we have

FH(G) N F~(G2) C FH(Int(Cl(G1))) N F~(Int(Cl(Ge))) =
X = [F~(CI(Y ~ Cl(G1))) U FF(CLY — CLG,)))| C
X —mx-Cl[F~(Y — CI(G1)) U FH(Y ~ Cl(Gy))] =
mx~1nt(F+(Cl(G1)) N F—(CI(GQ))).
Thersfore, we obtain F+(G1)1F ™ (Gs) C mx-Int(F+(Cl(G1))NE~(CG2))).

Theorem 3.2 For o multifunction F : (X,mx) — (Y,0), the following
are equivalent:
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(1) F is weakly m-continuous; ,

(2) mx-Cl(F~(Int(Cl,(B1))) U F*+(Int(Cly(B2)))) C F~(Clg(B1)) U
FT(Cly(Bg)) for every subsets By, By of Y;

(3) mx-Cl(F'~(Int(Cl(B1))) U FT(Int(Cl(Bg)))) < F~(Cly(By1)) U
FT(Clg(By)) for every subsets By, By of Y;

(4) mx-Cl(F~(Int(Cl(G1))) U F*(Int(Cl{Gy)))) <C F~(ClGy1)) U
F*(CI(Gy)) for every open sets G1,Gq of Y;

(5) mx-Cl(F~(Int(Cl(V4))) U FT(Int(Cl(V3)))) < F~(ClI(\1)) U
F*(CL(V)) for every preopen sets Vi,V of ¥;

(6) mx-Cl(F~ (Int(K1)) UF T (Int(K3))) C F~(K)UFT(Ky) for every
reqular closed sets K1, Ky of Y.

Proof. (1) = (2): Let Bj, By be any subsets of Y. Then Cly(B1) and
Clp(Bz2) are closed in Y. Therefore, by Theorem 3.1 we obtain
m x-Cl[F~(Int(Cly(B1))) U FT(Int (Cly(B2)))]
C F~(Clg(B1)) U F*(Clg(8y)).
(2) =+ (3): This is obvious since Cl(B) C Cly(B) for every subset B of

(3) = (4): This is obvious since Cl(G) = Cly(G) for every open set G
of Y.

(4) == (5): Let V1,V, be any preopen sets of Y. Then since V; C
Int(C1(14)), we have Cl(V;) = Cl(Int(Cl(V;))) for i = 1,2. Now, set G; =

Int(CI1("V;)), then G; is open in Y and CI(G;) = CI(V;). Therefore, by
~ (4) we obtain mx-CL(F~(Int(Cl(V1))) U FT(Int(CL(V2)))) < F~(Cl(V1)) U
FHCU(V)).

(5) = (6): Let Ki, Ko be any regular closed sets of Y. Then we
have Dat(K;) € 1PO(Y) and Int(K3) € PO(Y) and hence by (5) mx-
CUF- (Int(K1)) U F*(Int(Ky))) = mx-Cl(F~(Int(Cl(Int(X1)))) U
F+(Ins(Cl(Int(K 2))))) € F~ (K1) U F*(Ky).

(6) = (1): Let G1,G2 be any open sets of Y. Then Cl(Gi) and
Cl(Gy)) are regul ar closed sets of Y. Therefore, we obtain mx-CI(F~(G1)U
Ft(G,)) € mx-ClF~(Int(Cl(G1))) U FT(Int(Cl(G2)))] € F~(CIG1)) U
F*(Cli(Gy)). It follows from Theorem 3.1 that F is weakly m-continuous.

Theorem 3.3 For a multifunction F : (X,mx) — (Y,0), the following
nre equivalent:

(1) F is weakly m-continuous;

(2) mx-Cl(F~(Int(Cl(G1))) U FT(Int(Cl{G2)))) < F~(Cl(G1)) U
FH(CUGR)) for every G1,Ga € B(Y);
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(8) mx-ClF~(Int(CL(G1))) U FF(Int(CLGL)))) € F~(CIGy)) U
F*(CYGy)) for every G1,G2 € SO(Y).

Proof. (1) = (2): Let G1,G2 € B(Y). Then G; C Cl(Int(Cl(G:)))
and Cl(G;} = Cl(Int(Cl(())) for 4 = 1,2. Since CI(G1) and Cl(G3) are
regular closed sets, by Theorem 3.2 we have mx-Cl(F~(Int(Cl(G1))) U
FF(Int(Cl(Ge)))) € F~(CI(G1)) U F+(CI(Gy)).

(2) = (3): This is obvious since SO(Y) C A(Y).

(3) = (1): For any G € PO(Y), CI(G) is regular closed and CI(G) €
SO(Y). Then mx-Cl(F~(Int(Cl(G1)))UFT(Int(Cl(Gs)))) € F~(Cl(G1))U
F*(C1((32)). By Theorem 3.2, F' is weakly m-continuous.

Remark 3.4 If F : (X,7) — (Y,0) a multifunction and mx = SO(X)
(resp. PO(X), A(X)), then by Theorems 3.1-3.3 we can obtain characteri-
zations established in [20], [37] (resp. [35], [36]).

4 Weakly m-continuity and m-continuity

Definition 4.1 A multifunction F : (X, mx) — (Y, o) is said to be almost
m~continuous if for each point z € X and each open sets G1,G2 of Y
such that F(z) € (3F NG5, there exists U € my containing z such that
F(u) <2 Int(Cl(G1)) and F(uw) N Int(Cl(G2)) # O for every u € U.

Remiark 4.1 For a multifunction the following implications hold:

m-continuity = almost m-continuity = weak m-continuity.

Theorem 4.1 If F: X — Y is weakly m-continuous and F(x) is open in
Y jor each point x € X, then F is almost m-continuous.

Proof. Let z € X and G1,Gy be open sets in Y such that F(z) €
Gy NGy . Since F is weakly m-continuous, there exists U € my containing
z such that F(u) C CI(G1) and F(u) N Cl(Gy) # B for every u € U.
Since F(x) is open for each z € X, F(u) is open and F(u) C Int(Cl(G1)).
Moreover, F(u)MCl(Gy) # @ implies F(u)NInt(Cl(Gy)) # 0 for each u € U.
Therefore, F' is almost m~continuous.

Remark 4.2 If F: (X,7) — (Y,0) a multifunction and mx = SO(X)

(resp. PO(X'), B(X)), then by Theorem 4.} we can obtain the results
established in. [34] (resp. [32], [33]).
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Definition 4.2 A subset A of a topological space (X,7) is said to be

(1) a-regular [11] if for each a € A and each open set U containing a,
there exists an open set (¢ of X such that ¢ € G C CI(G) ¢ U,

(2) a-almost regular |12] if for each a € A and each regular open set U
containing a, there exists an open set G of X such that e € G C ClI(G) C U,

(3) a-paracompact [40] if every X-open cover of A has an X-open re-
finement which covers A and is locally finite for each point of X.

Lemma 4.1 (Kovagevié¢ [11]) If A is an o regular a-paracompact set of
a topological space (3!,7) and U is an open neighborhood of A, then there
exists an open set G of X such that AC G Cc CI(G) c U.

Lemma 4.2 (Popa. and Noiri [31]) If A is an a-almost regular o-paracom-
pact set of X and J is a regular open neighborhood of A, then there exists
an open set G of XX such that AC G c CI(G) C U.

Lemma 4.3 (Popa [26]) If A is an a-almost regular set of a topological
space (X,7) and U is a regular open set such that UN A # 0, then there
exists an open set G of X such that ANG # 0 and CI(G) C U.

Lemma 4.4 (Popa [27]) If A is an a-regular set of a topological space
(X,7) and U is a regular open set such that U N A # 0, for every open set
D which intizrsect A, there exists and open set D4 such that AN Dy 5 (
and Cl/D4) C D.

Theorem 4.2 A multifunction F : (X,mx) — (Y,0) is almost m-con-
tinuous if and only if F+(G1) N F~(G3) = mx-Int(FT(G1) N F~(Gy)) for
every requilar open sets Gi1,Gq of Y.

Procaf. Necessity. Let Gi,Gy be regular open sets of ¥V and z €
F*(G1) N F~(G2). Then there exists U € my containing = such that
F(u) C Gy and F(u) NGy # O for every u € U. Therefore, we have z €
UcC F’*‘(Gl) N F—(Gz) and hence F+(G1) N F‘(G‘z) C Wlx—Int(F.+(G1) N
F~(G,)). By Lemma 3.1, it follows that FT(G1) N F~(G2) = mx-
Int(F+(Gy) N F~ (Ga).

Stufficiency. Let G1, G be any open sets of Y such that F(z) € GInG;.
Thea Int(Cl(G1)), Int(Cl(G5)) are regular open sets of ¥ and

F(z) € (Int(CL(G1)))* N (Int(CI(G2)))".

By laypothesis, we have
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z € FH(Int(CYG1))) N F~(Int(ClGF2))) = mx-
Int(F*(Int(Cl(G1))) N F~(Int(Cl(G2)))).
There exists U € mx containing z such that F(u) C Int(Cl{(G;)) and
F(u) NInt(Cl(Gr)) # 0 for every u € U. Thus F is almost m-continuous.

Theorem 4.3 If F: (X,mx) — (Y, 0) is weakly m-continuous and F(z)
is an a-almost reqular o-paracompact set of Y for each point x € X, then
F is almost mi-continuous.

Proof. Let V7, V3 be regular open sets of Y and z € F (Vi) N F~(Va).
Then F(z) C Vi and F(z) N Vy # 0. Bince F(z) is a-almost regular a-
paracompact, by Lemma 4.2 there exists an open set W, such that F(z) C
W, C Cl{(W1) C V1. By Lemma 4.3, there exists an open set Wy of Y such
that F(z) N Wy # @ and C{W3) C Vi. Since F is weakly m-continuous,
there exists /' € my containing x such that F(u) ¢ Cl(W;) C V; and
Fu)NClY(Ws,) # 8 for every u € U. Therefore, we have z € U C F* (V1) N
F~(V3). Hence FT*(Vi)NF~ (V) C mx-Int(F+ (V)N F~(V3)). By Lemma
3.1, FY(Vi)NF~ (%) = mx-Int(F*(4)NF~(V2)). 1t follows from Theorem
4.2 that F is almost m-continuous.

Remark 4.3 Let F: (X,7) — (¥, 0) be a multifunction. If mx = SO(X)
(resp. PO(X), f}(X)), then by Theorem 4.3 we obtain the results estab-
lished in (34] (resp. (35], (36)).

Theorem 4.4 For a multifunction I : (X, mx) — (Y,o) such that F(z)
is an a-regular ce-paracompact set of Y for each point x € X, the following
are equivalent:

(1) F is m-continuous;

(2) F is almost m-continuous;

(3) F is weakly m-continuous.

Proof. We show only the implication (3) = (1) since the others are
obvious, Suppose that F is weakly m-continuous, Let z € X and Vi, Vs be
any open sets of 'Y such that z € F* (1)) N F~(V;). Then F(z) C V; and
F(z)NV, # 0. Since F(z) is a-regular a-paracompact, by Lemmas 4.1 and
4.4 there exist open sets Wy, Wy of Y such that F(z) c Wy C Cl(Wy) C W,
F(z) N Wy # ¢, and Cl(W3) C Va. Since F is weakly m-continuous, there
exists U € my containing x such that F(u) C CI(W;) and F(u)NCl(W2) #
0 for every u € U. Then F(u) < Vi and F(u)NVy # 0 for every u € U.
This shows that F' is m-continuous.
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Remark 4.4 Let [': (X, 7) — (Y, ) be a multifunction. If mx = PO(X)
(resp. (X)), then by Theorem 4.4 we obtain the results established in [21]
(resp. [36]).

Theorem 4.5 If F': (X,mx) — (Y,0) is o closed valued multifunction
and (Y,0) is a normal Ty space, then the following are equivalent:

(1) F'is mi-continuous;

(2) F'is almost m-continuous;

(8) F is weakly m-continuous.

Proof. As in Theorem 4.4, we prove only the implication (3) = (1).
Suppnse that F' is weakly m-continuous, Let 2 € X and G, G2 be any
open sets of Y such that F(z) € Gf NG5 . Since F(z) is closed in Y,
by the normality of ¥ there exists an open set D of X such that F(z) C
D ¢: CI{D) c G;. Since every normal T} space is T3 and F'(z) N G2 # 0,
theve exists an open set £ of Y such that EN F(z) # § and CI(E) C Ga.
Since F'is weakly m-continuous and F(z) € DY NE™, theve exists U € my
containing @ such that F(u) < C1(D) and F(u)NCIE) # @ for every v € U.
Therefoore, we obtain F'(u) < G; and F(u) N Gy # 0 for every u € U. This
shows that F' is m-continuous. |

Remark 4.5 Let F': (X,7) -» (Y,0) be a multifunction. If mx = PO(X)

(resp. ;3(X)), then by Theorem 4.5 we obtain the results established in [21]
(resp. [36]).

5 Properties of weakly m-continuous multifunc-

tions
For a multifunction F : X -+ (Y,0), by CI(F) : X - (Y,0) [5] we denote
a multifunction defined as follows Cl( )(z) = (F( )) for each z € X,
‘Similarly, we denote sCI1(F) : Y,o) [23], pCIF) : X — (Y,0) [25],
aCl(F): X — (Y,o) [28], [3CI(F) — (Y, o) [32]. .

Lemma 5.1 If F: (X,mx) ~ (Y,0) is a multifunction such that F(x) is
w-reqular and a-paracompact for each x € X, then

(1) GT(V) = Ft(V) for each open set V of Y,

(2) G~(K) == F~(K) for each closed set K of Y,
where G denotes CI(F'), pCl(F), sCl(F), aCl(F) or BCI(F).
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Proof. (1) Let V be any open set of ¥ and & € G* (V). Then G(z) C V
and F(z) C G(z) C V. We have z € F*(V) and hence G (V) C FT(V).
Conversely, let z € F* (V). Then we have F(x) C V and by Lemma
4.1 there exists an open. set H of Y such that F(z) ¢ H C CI(H) C V.
Since G(z) C Cl(F(x)), G(z) € V and hence =z € GT(V). Thus we obtain
F*(V) C G*(V). Thercfore, G*(V) = F*(V).

(2) This follows fromn (1) imimediately.

Lemma 5.2 For a multifunction F : (X,mx) — (Y,0), the following
properties hold:

(1) G~ (V) = F~ (V) for each open set V of Y,

(2) GH(K) = FT(K) for each closed set K of Y,
where G denotes C1(F"), pCl(F'), sCI(F), aCl(F) or SCI(F').

Proof. (1) Let V be any open set of ¥ and z € G~(V). Then G(z) N
V # 0 and hence F(x) NV 5 () since V is open. We have z € F~ (V)
and hence G~ (V) C F~(V). Conversely, let € F~ (V). Then we have
0 # F(z)NV C G(z)NV and hence z € G~ (V). Thus we obtain F~(V) C
G~ (V). Therefore, F~(V) = G (V). :

(2) This follows from (1) immediately.

Theorem 5.1 Let F' . (X,mx) — (Y,0) be a multifunction such that
F(z) is a-reqular and a-paracompact for each x € X. Then the following
properties are eguivalent:

(1) F' is weakly m-continuous;

(2) CUF) is weakly m-continuous;

(3) sCI(F) is weakly m-continuous;

(4) pCUF) is weakly m-continuous;

(5) aClL(F) is weakly m-continuous;

(6) BCI(F) is weakly m-continuous.

Proof. We put G = CI(F), pCl(F), sCI(F), a«CLl(F') or ACI(F) in the
sequel. .

Necessity, Suppose that F is weakly rn-continuous, Then it follows
from Theorem 3.1 and Lemimas 5.1 and 5.2 that for every open sets V| and
Vo of Y, GT(V}) NG~ (Vo) = FT (V1) N FF~(V,) C mx-Int(FT(Cl(V1)) N
F~(CUW))) = mx-Int(GF(CL(V1)) N G~ (Cl(V;))). By Theorem 3.1, G is
weakly m-continuous.

Sufficiency. Suppose thst G is wealily m-continuous. Then it follows
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from Theorem 3.1 and Lemmas 5.1 and 5.2 that for every open sets V}
and Vo of Y, FY(Vi)NF~ (Vo) = GT(Vi)NG~(Va) € mx-Int(G+(C1(V1))N
G~ (Cl(W))) = mx-Int(FH(CI(V1))NF~(CL{V2))). It follows from Theorem
3.1 that F' is weakly m-continuous,

Remark 5.1 Let F': (X,7) — (Y,0) be a multifunction. For a multifunc-
tion F': (X,mmx) — (Y,0) and mx = PO(X) (resp. B(X)), by Theorem
5.1 we obtain the results established in [35] (resp. [36]).

'Deﬁmition. 5.1 Let X be a nonempty set and my an m-structure on X.
For a subset A of X, the mx-frontier of A, mx-Fr(A), is defined as follows:

mx-Fr(A) = mx-Cl(4) Nmx-Cl(X ~ A).

Lemma 5.3 (Popa and Noiri [37]) Let X be a nonempty set with an m-
structuree myx and A a subset of X. Then, © € mx-Cl(A) if and only if
UNAs# 0 for every U € mx containing . '

Theorem 5.2 The set of all points x € X at which a multifunction F .
(X,mx) — (Y,0) is not weakly m-continuous is identical with the union of
the mx-frontiers of the intersection of upper/lower inverse images of the
closures of open sets containing/meeting F(z).

Proof. Let z be a point of X at which F' is not weakly m-continuous.
Then there exist two open sets V1, V3 of Y such that « € F+ (V1) N F~(V,)
and UN (X - (F(CUV1))NF~(CL(V3)))) # O for every U € mx containing
z. By Lemma 5.3, z € mx-Cl(X — (F(C1(V1)) N F~(C1(V2)))). On the
other hand, we have z € F* (V1) N F~(V,) C (FT(CI(V1)) N F~(Cl(Va)).
Thus we obtain 2 € mx-Fr(F+(Cl(V1)) N F~(Cl(WR))).

Conversely, suppose that F' is weakly m-continuous at z € X and let
Vi, V2 be any open sets of ¥ such that z € F*(Vi) N F~(V2). Then by
Theorem 3.1, we have z € my-Int(F*(Cl(V1)) N F~(C1(Vz))). Therefore,
x ¢ mx-Fr(FT(CL(V1)) N F~(C1(V2))). This completes the proof.

&

6 Applications:

There are many modifications of open sets in topological spaces. Recently,
many researchers are very interested in d-preopen sets, §-semi-open sets and
b-open sets. T'he definition of b-open sets as follows: A subset A of a topo-
logical space (X, 7) is said to be b-open [4] if A C Int(Cl(4)) U Cl(Int(A4)).
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Amo:ng sets in Definition 2.1 and these sets, the following relationships are
known:

open = (-0pen = preopen => d-preopen
4 4

d-semi-open = semi-open => b-open = fJ-open

For each of madifications of open sets containing sets stated above, we
can define a new fype of weakly m-~continuous multifunctions. For instance,
we can define as follows:

D efinition 6.1. Let (X,7) and (Y, 0) be topological spaces. A multifunc-
tion F: (X,7) — (Y,0) is said to be weakly super continuous (resp. weakly
§-precontinuo us, weakly 6-semicontinuous, weakly b-continuous) if for each
point z € X and each open sets V;,V, of Y such that F(z) € Vit NV,
there exists a d-open (resp. d-preopen, §-semi-open, b-open) set U of (X, 7)
containing z such that F(u) € (C1(V}))T N (Cl(V2))™ for every u € U.

We can obtain their characterizations and properties from Sections 3
and 4. Ifor example, in case my = dSO(X} by Theorem 3.1 we obtain
characterizations of weakly §-semicontinuous multifunctions.

Theorem 6.1 For a multifunction F : (X,7) — (Y, 0), the following prop-
erties are eguivalent:

(1) F is weakly delta-semicontinuous-continuous;

(2) F*(G1)NF~(Gq) C slnts(FT(CI(G1))NF~(CI(G2))) for every open
sets (71,Go of Y,

(3) sCls(F~(Int(K7)) U F*(Int(Ky))) € F~(Ky) U Ft(Ky) for every
closed sets Kv, Ky of Y,

(4) sCls(F~ (Int(C1(By)))UF™* (Int(CL(B3)))) C F~ (C1(B1))UF™*(CY(By))
for every subsets By, By of Y;

(5) F+(Int(B1)) N F~(Int(By)) C slnts(F+(Cl(B1))N F~(Cl(By)))) for
every subsets By, By ofY; .

(6) sCls(F~(G1)UFT(Gy)) € F~(CG1))UFT(CLGy)) for every open
sets G1,Gy of Y, :
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