On the decomposition of curvature tensor in recurrent conformal

 Finsler spaceS.P. Singh and J.K. Gatoto

M.S. Knebelman [1]1) has developed conformal geometry of generalised metric spaces. The projective tensor and curvature tensors in conformal Finsler spaces were discussed by R.B.Misra [3,4]. M.Gama [6] has decomposed recurrent curvature tensor in an areal space of submetric class. The decomposition of recurrent curvature tensor in Finsler space was studied by B.B.Sinha and S.P.Singh [5]. The purpose of the present paper is to decompose the recurrent conformal curvature tensor and study the properties of conformal decomposition tensors.

1. Introduction

Let us consider an n-dimensional Finsler space F_{n} in which two distinct metric functions are represented by $F(x, \dot{x})$ and $\bar{F}(x, \dot{x})$. Then the corresponding metric tensors $g_{i j}(x, \dot{x})$ and $\bar{g}_{i j}(x, \dot{x})$ are called conformal if they are proportional to each other. These quantities are related as under:
(a) $\bar{F}(x, \dot{x})=e^{\sigma} F(x, \dot{x})$
(b) $\bar{g}_{i j}(x, \dot{x})=e^{2 \sigma} g_{i j}(x, \dot{x})$
(c) $\bar{g}^{i j}(x, \dot{x})=e^{-2 a} g^{i j}(x, \dot{x})$,
where $\sigma=\sigma(x)$ is atmost a point function as shown by Knebelman [1]. The space equiped with quantities $\bar{F}(x, \dot{x}), \bar{g}(x, \dot{x})$ etc is called a conformal Finsler space usually denoted by \bar{F}_{n}

1) The numbers in brackets refer to the references given at the end of the paper
2) $\partial_{i}=\partial / \partial x^{j}$ and $\dot{\partial}_{j}=\partial / \partial \dot{x}^{j}$

In a Finsler space F_{n} with entities $F(x, \dot{x}), g_{i j}(x, \dot{x})$ etc, the covariant derivatives of a vector $T^{i}(x, \dot{x})$ with respect to x^{j} in the sense of Cartan and Berivald are given by [2].

$$
\begin{equation*}
T_{\mid j}^{i} \stackrel{d e f}{-} \partial_{j} T^{i}-\left(\dot{\partial}_{m} T^{i}\right)\left(\mathcal{J}_{j}^{m}+T^{m} \Gamma_{m j}^{* i 2)}\right. \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
T_{(j)}^{i} \stackrel{\operatorname{def}}{=} \partial_{j} T^{i}-\left(\dot{\partial}_{m} T^{i}\right) G_{j}^{m}+T^{m} G_{m j}^{l} \tag{1.3}
\end{equation*}
$$

where

$$
\begin{equation*}
G_{j}^{i}(x, \dot{x})=G_{m j}^{i}(x, \dot{x}) \dot{x}^{m}=\Gamma_{m j}^{* i}(x, \dot{x}) \dot{x}^{m} \tag{1.4}
\end{equation*}
$$

The connection coefficients are honogeneous functions of degree zero in \dot{x}^{\prime}. Considering quantities

$$
\begin{gather*}
\sigma_{m}(x) \stackrel{\text { def }}{=} \partial_{m} \sigma, \quad B^{i j}(x, \dot{x}) \stackrel{d e f}{=} \frac{1}{2} F^{2} g^{i j}-\dot{x}^{i} \dot{x}^{j}, \tag{1.5}\\
C_{j k}^{i}(x, \dot{x}) \stackrel{\text { def }}{=} 2 \sigma_{(, j} \delta_{k)}^{i}-\sigma_{m}\left\{g^{i m} g_{j k}-2 C_{r(j}^{i} \dot{\partial}_{k)} B^{r m}+g^{i r} C_{j k s} \dot{\partial}_{r} B^{s m}\right\},
\end{gather*}
$$

where $C_{m j}^{i}(x, \dot{x})=g^{i h} C_{m h j}(x, \dot{x})$, one; can have conformal connection coefficients :

$$
\begin{align*}
& \bar{\Gamma}_{j k}^{* i}(x, \dot{x})=\Gamma_{j k}^{* i}(x, \dot{x})+U_{j k}^{i}(x, \dot{x}), \tag{1.6}\\
& \bar{G}_{j k}^{j}(x, \dot{x})=G_{j k}^{i}(x, \dot{x})-\sigma_{m} \dot{\partial}_{j} \dot{\partial}_{k} B^{i m}, \tag{1.7}
\end{align*}
$$

where the functions $B^{i m}(x, \dot{x})$ are homogeneous of degree two in \dot{x}^{i}. The variation irı $G_{j k h}^{l}(x, \dot{x})$ under the conformal change (1.1) is given by

$$
\begin{align*}
& \bar{G}_{j k h}^{i}(x, \dot{x})=G_{j k h}^{l}(x, \dot{x})-\sigma_{m} \dot{\partial}_{j} \dot{\partial}_{k} \dot{\partial}_{h} B^{i m}, \tag{1.8}\\
& \bar{G}_{j k h}^{i}(x, \dot{x})=\dot{\partial}_{h} G_{j k}^{i}
\end{align*}
$$

where
$K_{i j k}^{i}, H_{i j k}^{i}$ and $H_{k h}^{i}$ transform under the conformal change (1.1) ass

$$
\begin{equation*}
\bar{K}_{r, k}^{i}=K_{r j k}^{i}+2 U_{r[j \mid k]}^{i}+2\left|\sigma_{m}\left\{\dot{\partial}_{s}\left(\Gamma_{r[j}^{* i}+U_{r[j}^{i}\right)\right\} \dot{\partial}_{k]} B^{s m}+U_{s \mid k}^{i} U_{j j r}^{s}\right| \tag{1,9}
\end{equation*}
$$

$$
\begin{align*}
\bar{H}_{i j k}^{i}=H_{i j k}^{\prime} & \left.+2 \sigma_{m[l j} \dot{\theta}_{k} \dot{\partial}_{r} \dot{\partial}_{r} B^{i m}-2 \sigma_{m} \dot{\partial}_{r}\left(\dot{\partial}_{r j} B^{i m}\right)_{(k)]}-\left(\partial_{l j} B^{i s}\right) G_{k \mid] s}^{m}\right\} \tag{1.10}\\
& +2 \sigma_{m} \sigma_{s} \dot{\partial}_{r}\left\{\left(\dot{\partial}_{[j} B^{p m} \dot{\partial}_{k j} \dot{\partial}_{p} B^{i s}\right\}\right.
\end{align*}
$$

and
respectively.
The Bianchi identities satisfied by $\bar{H}_{j k}^{i}, \bar{H}_{j j k}^{l}$ and $\bar{K}_{r j k}^{\prime}$ are [4]

$$
\begin{equation*}
\bar{H}_{[j k(\bar{h})]}=0 \tag{1.12}
\end{equation*}
$$

$$
(1.13) H_{[j k j(\vec{b})]}^{i}=\left\{H_{(k j}^{p}-\sigma_{q(j))^{2}} \dot{\partial}_{k} B^{p q}+\sigma_{q(k)} \dot{\partial}_{j} B^{p q}\right\} G_{h] p r}^{\dot{j}}+\sigma_{m} \mid\left\{\left(\dot{\partial}_{l i} B^{p m}\right)_{(k)}-\left(\dot{\partial}_{l k} B^{p m}\right)_{(j)}\right\} G_{h i \mid p r}^{\dot{j}}
$$

$$
\left.\left.+\left\{H_{[j k}^{p}+\sigma_{q(l j)} \dot{\partial}_{k} B^{p q}-\sigma_{q[(k)}\right)_{j} B^{p q}\right\} \dot{\partial}_{h \mid} \dot{\partial}_{b} \dot{\partial}_{,} B^{i m p}\right]-\sigma_{m} \sigma_{,} \mid G_{p r j i}^{l}\left\{\left(\dot{\partial}_{k} B^{s t}\right) \dot{\partial}_{h]} B^{p m}-\right.
$$

$$
-\left(\dot{\partial}_{h} B^{s l} \dot{\partial}_{k l} \dot{\partial}_{s} B^{p m}\right\}+\left(\dot{\partial}_{p} \dot{\partial}_{r} \dot{\partial}_{0} B^{n i}\right)\left\{\left(\dot{\partial}_{k} B^{p m}\left\{_{h n]}-\left(\dot{\partial}_{h} B^{p m}\right)_{k(k)}\right\}\right]+\right.
$$

$$
+\sigma_{m} \sigma_{q} \sigma_{1}\left(\dot{\partial}_{p} \dot{\partial}_{r} \dot{\partial}_{[}, B^{i q}\right)\left\{\left(\dot{\partial}_{k} B^{s l}\right) \dot{\partial}_{h} \dot{\partial}_{s} B^{p m}-\left(\dot{\partial}_{h} B^{s}\right) \dot{\partial}_{k} \mid \dot{\partial}_{s} B_{=}^{p m}\right\}
$$

and

$+\left\{\left(\dot{c}_{k} B^{s m}\right) \dot{\partial}_{h} \dot{\partial}_{s} B^{m}-\left(\dot{\partial}_{h} B^{s m}\right) \dot{\partial}_{k} \dot{\partial}_{s} B^{p \prime}\right\} \sigma_{m} \sigma_{t}+\sigma_{|m|(k)} \dot{\partial}_{h]} B^{p m}--\sigma_{[m \mid(h)} \dot{\partial}_{k]} B^{m m}(]=0$ res!pectively. The notations (\bar{k}) and $\mid \bar{h}$ represent covariant differentiation in the sense of Berwald and Cartan respectively in conformal Finsler space \bar{F}_{n}.

2. Decomposition of conformal curvature tensor $\bar{H}_{v ; k}^{\prime}$

The recurrent conformal curvature tensor $\bar{H}_{r j k}^{i}$ is characterised by the condition

$$
\begin{equation*}
\bar{H}_{r j k(\overline{i j})}^{i}=\bar{V}_{m} \bar{H}_{r j k}^{i}, \quad \bar{H}_{v j k}^{i} \neq 0 \tag{2.1}
\end{equation*}
$$

where the barred index enclosed within the round bracket denotes the covariant derivatlve with respect to x 's for the connectlon parameters

$$
\begin{align*}
& \bar{H}_{k h}^{i}=H_{k h}^{i}-2 \sigma_{m}\left\{\dot{\theta}_{[k} B^{i m}\right\}_{(h)]}+2 \sigma_{m[k)} \dot{\partial}_{h]} B^{i m} \tag{1.11}\\
& +2 \sigma_{m} \sigma_{r}\left(\dot{\partial}_{[k} B^{s m}\right) \dot{\partial}_{n \mid} \dot{\vec{a}}_{s} B^{i \prime}
\end{align*}
$$

$\bar{G}_{j k}^{i}(x, \dot{x})$. The covaxiant vector $\bar{V}_{m}(x, \dot{x})$ is called the conformal recurrence vector. The conformal space equipped with such curvature tensor is called recurrent conformal Finsler space and we denote it by \bar{F}_{n}^{*}.

We consider the decomposition of the recurrent conformal curvature tensor in the form

$$
\begin{equation*}
\bar{H}_{r j k}^{i}=\bar{X}^{i} \bar{\Phi}_{r j k} \tag{2.2}
\end{equation*}
$$

where $\bar{\Phi}_{r j k}$ is a homogeneous conformal decomposition tensor and \bar{X}^{i} is a non-zero conformal vector such that

$$
\begin{equation*}
\bar{X}^{i} \bar{V}_{i}=1 \tag{2.3}
\end{equation*}
$$

Sinha and Singh [5] have decomposed the recurrent curvature tensor $H_{r j k}^{i}$ in similar manner
$(2.4)(a)$

$$
H_{r j k}^{i}=X^{i} \Phi_{r j k}
$$

where the decomposition vector X^{i} also satisfies the condition

$$
\begin{equation*}
X^{i} V_{i}=1 \tag{2,5}
\end{equation*}
$$

Transvecting (2,4)(a) by \dot{x}^{r} and noting $H_{r j k}^{i} \dot{x}^{r}=H_{j k}^{i} \quad$ [2], We obtain
$(2.4)(b)$

$$
H_{j k}^{i}=X^{i} \Phi_{j k}
$$

where $\quad \Phi_{l k}=\Phi_{i j k} \dot{x}^{r}$.
The decomposition tensor $\Phi_{1 j k}$ satisfies the identities

$$
\begin{equation*}
\Phi_{r j k}=-\Phi_{r k j} \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\Phi_{r j k}+\Phi_{j k r}+\Phi_{k j j}=0 \tag{2.7}
\end{equation*}
$$

We notice that the decomposition vector X^{i} and the recurrence vector V_{i} are transformed conformally as under :

$$
\begin{equation*}
\bar{X}^{i}=e^{-\sigma} X^{i} \tag{2.8}
\end{equation*}
$$

and

On the decomposition of curvature tensor in recurrent conformal...

$$
\begin{equation*}
\overline{V_{i}}=e^{\sigma} V_{i} \tag{2.9}
\end{equation*}
$$

respectively.
Applying equations (2.2) and (2.4)(a) in equation (1.10), we obtain
(2.10) $\bar{X}^{i} \bar{\Phi}_{r j k}=X^{i} \Phi_{r j k}+2 \sigma_{m[(j)} \dot{\partial}_{k} \dot{\partial}_{r} B^{i m}-2 \sigma_{m}\left\{\dot{\partial}_{r}\left(\dot{\partial}_{[j} B^{i m}\right)_{(k)]}-\left(\dot{\partial}_{[j} B^{i s}\right) G_{k] r s}^{m}\right\}$

$$
+2 \sigma_{m} \sigma_{s} \dot{\partial}_{r}\left\{\left(\dot{\partial}_{[j} B^{p m}\right) \dot{\partial}_{k]} \dot{\partial}_{p} B^{i s}\right\}
$$

Transvecting (2.10) by \bar{V}_{i} and using the relations (2.3), (2.5), and (2.9), it yields
(2.11) $\left.\bar{\Phi}_{r j k}=e^{\sigma}\left[\Phi_{r j k}+2 \sigma_{m(j)} \dot{\partial}_{k]} \dot{\partial}_{r} B^{i m} V_{i}-2 \sigma_{m}\left\{\dot{\partial}_{r}\left(\dot{\partial}_{[j} B^{i m}\right)_{(k)]}-\left(\dot{\partial}_{[j} B^{i s}\right) G_{k}^{m}\right] r s\right)\right\} V_{i}$

$$
\left.+\sigma_{m} \sigma_{s} \dot{\partial}_{r}\left\{\left(\dot{\partial}_{[j} B^{p m}\right) \dot{\partial}_{k]} \dot{\partial}_{p} B^{i s}\right\} V_{i}\right]
$$

which represents the conformal transformation of the decomposition tensor $\Phi_{r j k}$ under the change (1.1)
Thus we state
Theorem 2.1: Under the decomposition (2.2), the conformal decomposition tensor $\Phi_{r j k}$ is expressed in the form (2.11).

Interchanging the indices j and k in the equation (2.11), we get

$$
\begin{equation*}
\bar{\Phi}_{r j k}=-\bar{\Phi}_{r k j} \tag{2.12}
\end{equation*}
$$

in view of (2.6).
The cyclic permutation of the indices $\mathrm{r}, \mathrm{j}, \mathrm{k}$ in the equation (2.11) yields the identity

$$
\begin{align*}
\bar{\Phi}_{[y, k]} & =e^{\sigma} V_{i}\left[\sigma_{m} \dot{\partial}_{[r}\left(\dot{\partial}_{k} B^{i m}\right)_{(j)]}-\sigma_{m} \partial_{[r}\left(\dot{\partial}_{j} B^{i m}\right)_{(k)]}\right. \tag{2.13}\\
& \left.\left.+\sigma_{m} \sigma_{s} \dot{\partial}_{[r},\left(\dot{\partial}_{j} B^{p m}\right) \dot{\partial}_{k} \dot{\partial}_{p} B^{i s}\right\}-\sigma_{m} \sigma_{s} \dot{\partial}_{[r}\left\{\left(\dot{\partial}_{k} B^{p m}\right) \dot{\partial}_{j]} \dot{\partial}_{p} B^{i s}\right\}\right]^{3)}
\end{align*}
$$

by applying (2.7) and the symmetry property of $G_{r j k}^{i}$.
Hence we state
Theorem 2.2: Under the decomposition (2.2), the conformal decomposition tensor $\bar{\Phi}_{v j k}$ satisfies the identities (2.12) and (2.13).

Transvecting the equation (2.2) by \dot{x}^{r}, we have

$$
\begin{equation*}
\bar{H}_{j k}^{i}=\bar{X}^{i} \bar{\Phi}_{j k} \tag{2.14}
\end{equation*}
$$

where

$$
(2.15) \quad \bar{\Phi}_{j k}=\bar{\Phi}_{r j / k} \dot{x}^{r}
$$

and $\widetilde{H}_{j k}^{i}$ satisfies the relation (1.11).
Applying the equation (2.5), (2.9) and (2.14) in the equation (1.11), it assumes the forms

$$
\begin{align*}
\bar{\Phi}_{k h}= & e^{\sigma} V_{i}\left[H_{k h}^{i}--2 \sigma_{m}\left\{\dot{\partial}_{[k} B^{i m}\right\}_{(h)]}+2 \sigma_{m(k)} \dot{\partial}_{h} B^{i m}\right. \tag{2.16}\\
& \left.+2 \sigma_{m} \sigma_{r}\left(\dot{\partial}_{[k} B^{s m}\right) \dot{\partial}_{h} \dot{\partial}_{s} B^{i r}\right]
\end{align*}
$$

Interchanging the indices k and h in the equation (2.16), we get

$$
\begin{equation*}
\bar{\Phi}_{k h}=-\bar{\Phi}_{h k} \tag{2.17}
\end{equation*}
$$

by virtue of the relation $H_{k h}^{i}=-H_{h k}^{l}$ [2].
In view of the equations $(2.4)(b)$ and (2.5), the equation (2.16) becomes

$$
\begin{align*}
& \bar{\Phi}_{k h}=e^{\sigma}\left[\Phi_{k h}-2 \sigma_{m}\left\{\dot{\partial}_{[k} B^{(m}\right\}_{(h)]} V_{i}+2 \sigma_{m[(k)} \dot{\partial}_{h]} B^{i m} V_{i}\right. \tag{2.18}\\
&\left.+2 \sigma_{m} \sigma_{r}\left(\dot{\partial}_{[k} B^{s m}\right) \dot{\partial}_{h]} \dot{\partial}_{s} B^{i r} V_{i}\right]
\end{align*}
$$

which gives the conformal transformation of the decomposition tensor $\Phi_{k h}$ under the charige (1.1)
Accordingly, 'we have
Theorem 2.5: Under the decomposition (2.2) and ${ }^{\prime}(2.14)$ the conformal decomposition tensor $\bar{\Phi}_{k h}$ is expressed in the form (2.18)

In view of the equations $(2.2),(2.3),(2.4),(2.9)$ and (2.14), the identities (1.12) and (1.13) assume the forms

$$
\begin{equation*}
\bar{\Phi}_{[j k(\bar{i})]}=0 \tag{2.19}
\end{equation*}
$$

and

$$
\begin{align*}
& \bar{\Phi}_{r[j k(\bar{n})]}=e^{\sigma} V_{i}\left\{X^{p} \Phi_{[k j}-\sigma_{q[(j))} \dot{\partial}_{k} B^{p q}+\sigma_{q[(k)} \dot{\partial}_{j} B^{p q}\right\} G_{h] p r}^{i} \tag{2.20}\\
& +e^{\sigma} V_{i}\left\{\left\{\left(\dot{\partial}_{[. j} B^{p m}\right)_{(k)}-\left(\dot{\partial}_{[k} B^{p m}\right)_{(j)}\right\}_{h] p r}^{i}+\left\{X^{p} \Phi_{[j k}+\sigma_{q[(j)} \dot{\partial}_{k} B^{p q}\right.\right. \\
& \left.\left.-\sigma_{q[(k)} \dot{\partial}_{j} \beta^{p q}\right\} \dot{\partial}_{h} \dot{\partial}_{p} \dot{\partial}_{r} B^{i m}\right]-e^{\sigma} V_{i} \sigma_{m} \sigma_{t}\left[G_{p r l j}^{i} ;\left(\dot{\partial}_{k} B^{s t}\right) \dot{\partial}_{h} \dot{\partial}_{s} B^{p m}\right. \\
& \left.\left.-\left(\dot{\partial}_{h} B^{s t}\right)_{\left.\partial_{l}\right]} \dot{\partial}_{s} B^{p m}\right\}+\left(\dot{\partial}_{p} \dot{\partial}_{r} \dot{\partial}_{[i} B^{i t}\right)\left\{\left(\dot{\partial}_{k} B^{p m}\right)_{(h)]}-\left(\dot{\partial}_{h} B^{p m}\right)_{(k)]}\right\}\right] \\
& +e^{\sigma} V_{i} \sigma_{m} \sigma_{q} \sigma_{i}\left(\dot{\partial}_{p} \dot{\partial}_{r} \partial_{[j} B^{i q}\right)\left\{\left(\dot{\partial}_{k} B^{s t}\right) \dot{\partial}_{h]} \dot{\partial}_{s} B^{p m}-\left(\dot{\partial}_{h} B^{s t}\right) \dot{\partial}_{k} \dot{\partial}_{s} B^{p m}\right\}
\end{align*}
$$

respectively. Hence we have
Theorem 2.4 : Under the decomposition (2.2) and (2.14), the conformal decomposition tensors $\bar{\Phi}_{j k}$ and $\bar{\Phi}_{r j k}$ satisfy the Bianchi identities (2.19) and (2.20) respectively.

Differentiating (2.2) covariantly with respect to x^{h} in the sense of Berwald, we get

$$
\begin{equation*}
\bar{H}_{r j k(\bar{h})}^{i}=\bar{X}_{(\bar{h})} \bar{\Phi}_{r i k}+\bar{X}^{i} \bar{\Phi}_{r j k(\bar{h})} . \tag{2.21}
\end{equation*}
$$

Applying (2.1) and (2.2) in the above equation, we find

$$
\begin{equation*}
\bar{X}^{i} \bar{\Phi}_{r j k} \bar{V}_{h}=\bar{X}_{(\bar{i})} \bar{\Phi}_{r j k}+\bar{X}^{i} \bar{\Phi}_{r j k(\bar{h})} . \tag{2}
\end{equation*}
$$

Let us assume that the conformal vector \bar{X}^{i} is covariant constant, then (2.22) reduces to

$$
\begin{equation*}
\bar{\Phi}_{r j k(\bar{n})}=\bar{V}_{h} \bar{\Phi}_{i j k} \tag{2.23}
\end{equation*}
$$

Conversely, if the above equation is true, the equation (2.22) yields

$$
\bar{X}_{(\bar{h})}^{i} \bar{\Phi}_{z ; j k}=0
$$

Since $\bar{\Phi}_{r j k}$ is non-zero conformal decomposition tensor ,it implies

$$
\begin{equation*}
\bar{X}_{(\bar{n})}^{i}=0 \tag{2.25}
\end{equation*}
$$

which shows that \bar{X}^{i} is covariant constant in the space \bar{F}_{n}^{*}.
Transvecting (2.23) by \dot{x}^{r} and using (2.15), we obtain

$$
\begin{equation*}
\bar{\Phi}_{j k(\bar{h})}=\bar{V}_{h} \bar{\Phi}_{j k} \tag{2.26}
\end{equation*}
$$

Thus we state
Theorem 2.5: In a recurrent conformal Finsler space \bar{F}_{n}^{*}, the necessary and sufficient condition for the conforrnal decomposltion tensor field $\mathrm{s} \bar{\Phi}_{r j k}$ and $\bar{\Phi}_{j k}$ to be recurrent is that the conformal vector field \bar{X}^{i} is covariant constant in the sense of Berwald.

Decomposition of conformal curvature tensor $\bar{K}_{r j k}^{i}$

h1 this section we consider the decomposition of the conformai curvature tensor $\bar{K}_{r j k}^{i}$. In similar manner, the recurrent conformal curvature tensor $\bar{K}_{r, j k}^{i}$ is characterised by

$$
\begin{equation*}
\bar{K}_{r j k \mid \bar{h}}^{i}=\bar{V}_{h} \bar{K}_{r j k}^{i}, \quad \bar{K}_{r j k}^{i} \neq 0 \tag{3.1}
\end{equation*}
$$

where the symbol $\mid \bar{h}$ denotes the covariant derivative with respect to x^{i} for the connection coefficients $\bar{\Gamma}_{j k}^{*}(x, \dot{x})$. The non-zero covariant vector $\bar{V}_{h}(x, \dot{x})$ is called the conformal recurrence vector .

We decompose the recurrent conformal curvature tensor $\bar{K}_{r i k}^{-i}$ in the following manner :

$$
\begin{equation*}
\bar{K}_{r j k}^{i}=\bar{X}^{\prime} \bar{\Psi}_{r j k} \tag{3.2}
\end{equation*}
$$

where $\bar{\Psi}_{r j k}$ is conformal decomposition tensor and \bar{X}^{i} is conformal vector which satisfies the relation (2.3).
In a recurrent Finsler space, if the curvature tensor $K_{r j k}^{l}$ is decomposed as

$$
\begin{equation*}
K_{r i k}^{i}=X^{i} \Psi_{r j k}, \quad K_{r j k}^{i} \neq 0 \tag{3.3}
\end{equation*}
$$

where the decomposition vector X^{i} satisfies the relation (2.5), then the decomposition vector X^{i} and the recurrence vector V_{i} are transformed conformally in the form (2.8) and (2.9) respectively .

In view o! the identities $K_{i j k}^{\prime}=-K_{r k j}^{i}$ and $K_{[j k]}^{i}=0 \quad$ [2], the decomposition tensor $\Psi_{r_{j} k}$ satisfies the identities

$$
\begin{align*}
& \Psi_{r j k}=-\Psi_{r k j}^{\prime}, \tag{3.4}\\
& \Psi_{[y j k]}=0 . \tag{3.5}
\end{align*}
$$

Using the equations (3.2) and (3.3) in the equation (1.9) , it assumes the form (3.6) $\bar{X}^{i} \bar{\Psi}_{r j k}=X^{i} \Psi_{i j k}+2 U_{r[j k]}^{i}+2\left[\sigma_{m}\left\{\dot{\partial}_{s}\left(\Gamma_{[j j}^{* i}+U_{r[j]}^{i}\right) \dot{\partial}_{k]} B^{s m}\right\}+U_{s[k}^{i} U_{j]_{r}}^{s}\right]$.

Transvecting the above equation by \bar{V}_{i} and applying the equations (2.3), (2.5) and (2.9), it becomes
(3.7) $\left.\bar{\Psi}_{r j k}=e^{\sigma} \Psi_{r j k}+2 e^{\sigma} U_{r[j \mid k]}^{i}+2 e^{\sigma} \mid \sigma_{m}\left\{\dot{\partial}_{s}\left(\Gamma_{r[j}^{* i}+U_{r[j}^{i}\right)\right\} \dot{\partial}_{k]} B^{s m}+U_{s[k}^{i} U_{j r]}^{s}\right]$,
which gives the conformal transformation of the decomposition tensor $\Psi_{r j k}$ under the change (1.1) .
Accordingly, we have
Theorem 3.1: Under the decomposition (3.2), the decomposition tensor $\bar{\Psi}_{r j k}$ is expressed in the form (3.7).

Interchanging the indices j and k in the equation (3.7) and noting (3.4), we get

$$
\begin{equation*}
\bar{\Psi}_{j j k}=-\bar{\Psi}_{r k j} \tag{3.8}
\end{equation*}
$$

Also the cyclic permutation of the indices r, j, k in the equation (3.7) yields

$$
\begin{equation*}
\bar{\Psi}_{[, k k]}=0 \tag{3.9}
\end{equation*}
$$

in view of (3.5).
Thus we have
Theorem 3.2: Under the decomposition (3.2), the conformal decomposition terisor $\bar{\Psi}_{r j k}$ satisfies the identities (3.8) and (3.9).

Applying (2.3),(2.4)(b),(2.5),(2.9) and (3.2) in the Bianchi identity (1.14), it assumes the form

$$
\begin{align*}
& \Psi_{r \mid j k[\bar{b}]}+e^{\sigma} V_{i}\left(\dot{\partial}_{p} \Gamma_{r, j}^{+j}\right) X_{i}^{p} \Phi_{k h]}+e^{\sigma} V_{i}\left(\dot{\partial}_{p} U_{r[j}^{i}\right) X^{p} \Phi_{k h]} \tag{3.10}\\
& +e^{\sigma} V_{i}\left(\dot{o}_{p}\left(\Gamma_{r j}^{* j}+U_{r[j}^{\prime}\right)\right)\left\{\left(\left(\dot{\partial}_{h} B^{p m}\right){ }_{k(k)]}-\left(\dot{\partial}_{k} B^{p m}\right)_{(n)]}\right) \sigma_{m}\right. \\
& +\left\{\left(\dot{\partial}_{k} B^{s m} \dot{\partial}_{h}\right]_{s} \dot{\partial}^{n} B^{m}-\left(\dot{\partial}_{h} B^{s m}\right) \dot{\partial}_{k} \dot{\partial}_{s} B^{n \prime}\right\} \sigma_{m} \sigma_{1} \\
& \left.+\sigma_{\mid m(k)} \dot{\partial}_{h]} B^{p m}-\sigma_{|m|(h)} \dot{\partial}_{k \mid} B^{p m}\right]=0 .
\end{align*}
$$

Hence we state
Theorem 3.3 : Under the decomposition (3.2) the conformal decomposition tensor $\bar{\Psi}_{r j k}$ satisfies the Bianchì identity (3.10).

Taking covariant differentiation of (3.2) with respect to x^{h} in the sense of Cartan, it yields

$$
\begin{equation*}
\bar{K}_{i j k \mid \bar{h}}^{i}=\bar{X}_{\mid \bar{h}} \bar{\Psi}_{r j k}+\bar{X}^{i} \bar{\Psi}_{r j k!\bar{h}} . \tag{3.11}
\end{equation*}
$$

In view of the equation (3.1), it becomes

Using the decomposition (3.2) in the above equation, we get

$$
\begin{equation*}
\bar{X}^{i} \bar{y}_{h} \bar{\Psi}_{v k k}=\bar{X}_{\mid \bar{h}}^{i} \bar{\Psi}_{r \mid k}+\bar{X}^{i} \bar{\Psi}_{v k \mid \bar{h}} \tag{3.13}
\end{equation*}
$$

Let us assume that the conformal vector \bar{X}^{\prime} is covariant constant, that is, $\bar{X}_{\mid \bar{h}}^{i}=0$. Then the equation (3.13) reduces to

$$
\begin{equation*}
\bar{\Psi}_{v j \mid \vec{h}}=\bar{V}_{h} \bar{\Psi}_{r j k} . \tag{3.14}
\end{equation*}
$$

Conversely, if the above relation is true ,then from the equation (3.13), we find

$$
\begin{equation*}
\bar{X}_{\mid \pi}^{\prime} \bar{\Psi}_{r j k}^{\prime}=0 \tag{3.15}
\end{equation*}
$$

Since $\bar{\Psi}_{v i j k}$ is non-zero, it implies

$$
\begin{equation*}
\bar{x}_{h}^{\prime}=0, \tag{3.16}
\end{equation*}
$$

which implies that the conformal vector \bar{X}^{i} is covariant constant. We have
Theorem 2.4 : Under the decomposition (3.2), the necessary and sufficient condition for the conformai decomposition tensor field $\Psi_{r j k}$ to be recurrent is that the conformai vector \bar{X}^{i} is covariant constant in the sense of Cartan.

REFERENCES

[1] M.S. Knebelman : Conformal geometry of generalised metric spaces, Proc. Nat. Acad. Sci. U.S.A. ,15 (1929) p 376-379.
[2] H. Rund : The differential gerometry of Finsler space, Springer -Verlag (1959).
[3] R.B. Misra : Projective tensor in a conformal Finsler space, Bull. de la Classe des Sciences, Acad. Royale de Belgique, (1967) 1275-1279.
[4] R.B.Misra : The Bianchi identities satisfied by curvature tensors in a conformal Finsler space, Tensor N.S.,18(1967),p187-190.
[5] B.B.Sinha and S.P.Singh : On decomposition of recurrent curvature tensor fields in Finsler spaces, Bull.Cal. Math. Soc. 62(1967)p 91-96
[6] M.Gama : On the decomposition of the recurrent tensor in an Areal space of submetric class,Jour. of Hokkaido Univ. (Section II) 28 (1978) p 77-80

Department of Mathematics
Faculty of Science
Egerton University
P.O. Box 536, Njoro

Kenyza.
e-mail: eu-cs@net2000ke.com

