Motion with contra field in Finsler spaces II

S.P. Singh

An affine motion of special type in non-Riemannian K^{*}-spaces was developed by Takano [6] which he called an affine motion with contra field. Later on , the same concept was extended to Finsler spaces by Misra and Meher[2]. The same authors [3] have discussed CA-motion in projective symmetric Finsler space.The present author and Gatoto[5] have studied projective motion in Finsler spaces. The object of the present paper is to define CA and CP motions in Finsler space F_{n}. The notations of Hiramatu[1] and Singh[4] are used in the sequel.

1. INTRODUCTION

In an n-dimentional Finsler space F_{n}, we consider an infinitesimal transformation[7]

$$
\begin{equation*}
\bar{x}^{i}=x^{i}+\xi^{i}(x) d t, \tag{1.1}
\end{equation*}
$$

where $\xi^{i}(x)$ is a contravariant vector field and dt is an infinitesimal constant.
The covariant derivatives of a scalar $f(x, \dot{x})$ and a tensor $T_{j k}^{i}(x, \dot{x})$ "* are given by

$$
\begin{equation*}
f_{;!}=f_{l,}-\left.f\right|_{a} \Gamma_{b l}^{* a} \dot{x}^{b} \tag{1.2}
\end{equation*}
$$

2.nd
(1.3) $\quad T_{j k ; h}^{i}=T_{j k, h}^{i}-\left.T_{j k}^{i}\right|_{a} \Gamma_{b h}^{* a} \dot{x}^{j}+\Gamma_{j k}^{* a} \Gamma_{a h}^{* i}-T_{a k k}^{i} \Gamma_{j h}^{* a}-T_{j a}^{i} \Gamma_{k h}^{* a}$
respectively, where a comma and a vertical bar denote the partial derivatives of a function with respect to x^{i} and \dot{x}^{i} respectively.

* Number in the bracket refers to the reference at the end.
** Indices $\mathrm{i}, \mathrm{j}, \mathrm{k}, \ldots$ run over the natural numbers $\mathrm{I}, 2,3, \ldots, \mathrm{n}$.

The Lie-derivatives, with respect to the transformation (1.1), of the miked tensor $T_{j k}^{i}$ and the connection coefficient $\Gamma_{j k}^{* i}$ are expressed as

$$
\begin{equation*}
£ T_{j k}^{i}=T_{j k ; a}^{i} \xi^{a}+\left.T_{j k}^{i}\right|_{a} \xi_{; b}^{a} \dot{x}^{b}-T_{j k}^{a} \xi_{; a}^{i}+T_{u k}^{i} \xi_{; j}^{a}+T_{j u}^{i} \xi_{; k}^{a} \tag{1.4}
\end{equation*}
$$

and

$$
\begin{equation*}
£ \Gamma_{j k}^{* i}=\xi_{; j ; k}^{i}+R_{j k k}^{* j} \xi^{l}+\left.\Gamma_{j k}^{* i}\right|_{a} \xi_{;}^{\prime \prime} \dot{x}^{b} \tag{1.5}
\end{equation*}
$$

res'pectively, where
(1.6) $\quad R_{j k l}^{* i}=\left(\Gamma_{j k, l}^{* i}-\left.\Gamma_{j k}^{* i}\right|_{a} \Gamma_{b l}^{* a} \dot{x}^{b}\right)-\left(\Gamma_{j l, k}^{* i}-\left.\Gamma_{j l}^{* i}\right|_{a} \Gamma_{b, k}^{* a} \dot{x}^{b}\right)+\Gamma_{j k}^{* a} \Gamma_{a l}^{* i}-\Gamma_{a k}^{* i} \Gamma_{j l}^{* a}$
is the corresponding curvature tensor field.
The Lie-derivative of the curvature tensor field, in terms of the connection coefficient $\Gamma_{j k}^{* i}$, is defined as

$$
\begin{equation*}
\left(£ \Gamma_{j k}^{* i}\right)_{; l}-\left(£ \Gamma_{, l}^{* i}\right)_{; k}=£ R_{j k l}^{* i}+\left.\Gamma_{j k}^{* i}\right|_{a} £ \Gamma_{b l}^{* /} \dot{x}^{b}-\left.\Gamma_{j l}^{*_{i}}\right|_{a} £ \Gamma_{b k}^{* a} \dot{x}^{b} . \tag{1.7}
\end{equation*}
$$

2 CA-MOTION IN A SYMMETRIC FINSLER SPACE

Definition 2.1: A Finsler space is called a symmetric space when its curvature tensor field $R_{j k h}^{* i}$ satisfies the relation

$$
\begin{equation*}
R_{j h h ; l}^{* j}=0 . \tag{2.1}
\end{equation*}
$$

The infinitesimal transformation (1.1) is said to be affine motion if it satisfies the condition $£ g_{i j}=0$. In such case we necessarily have

$$
\begin{equation*}
£ \Gamma_{j k}^{* i}=\xi_{; j ; k}^{i}+R_{j k l}^{* i} \xi^{l}+\Gamma_{j k| | a}^{* i} \xi_{; b}^{a} \dot{x}^{b},=0 . \tag{2.2}
\end{equation*}
$$

In view of (1.7) and (2.2), we immediately get

$$
\begin{equation*}
£ R_{j k h}^{* i}=0 \tag{2.3}
\end{equation*}
$$

which implies that if the Finsler space F_{n}^{\prime} adrnits an affine motion then the curvature tensor $R_{j k l}^{* i}$ is Lie-invariant.
Now let us consider an affine motion with contra-field. In such case we assume a special infinitesimal transformation in the form
(2.4)
a) $\bar{x}^{i}=x^{i}+\xi^{i}(x) d t$
b) $\xi_{; j}^{i}=\lambda \delta_{j}^{i}$,
where $\lambda(x, \dot{x})$ is some non-zero scalar function .

Definition 2.2: A Finsler space F_{n}, which admits the transformation (2.4) defines an affine motion with contra field. Such a motion is called CAmotion.

In view of the definition of Lie- derivative, the equation (2.3) is expressed irs the form
(2.5) $\quad R_{j k l ; m}^{* i} \xi^{m}-R_{j k l}^{* m} \xi_{; m}^{i}+R_{m k l}^{* i} \xi_{; j}^{m i}+R_{j m i}^{* i} \xi_{; k}^{m}+R_{j k m}^{* i} \xi_{; l}^{m}+\left.R_{j k l}^{* i}\right|_{m} \xi_{; p}^{m} \dot{x}^{p}=0$

If the Finsler space under consideration is symmetric, the equation (2.5) becomes

$$
\begin{equation*}
-R_{j k l}^{* m} \xi_{; m}^{i}+R_{m k l}^{* i} \xi_{; j}+R_{j m l}^{* i} \xi_{; k}^{m}+R_{j k m}^{* i} \xi_{; i}^{m}+\left.R_{j k l}^{* i}\right|_{m} \xi_{; p}^{m} \dot{x}^{p}=0 \tag{2.6}
\end{equation*}
$$

by virtue of (2.1).
Since the Finsler space F_{n} admits a CA-motion, the equation (2.6) reduces to

$$
\begin{equation*}
2 \lambda R_{j k l}^{*_{i}}+\left.\lambda R_{j l l}^{*_{j}}\right|_{p} \dot{x}^{p}=0 . \tag{2.7}
\end{equation*}
$$

Since λ is a non-zero scalar function, we express

$$
\begin{equation*}
R_{j k l}^{* l}=-\left.\frac{1}{2} R_{j k k}^{* l}\right|_{p} \dot{x}^{p} . \tag{2.8}
\end{equation*}
$$

Accordingly we state
Theorem 2.1: A symmetric Finsler space F_{n}, which admits CA-motion , the curvature tensor: $R_{j k l}^{* i}$ is expressed in the form (2.8).

3. CHARACTERISTICS OF SCALAR FUNCTION

In a Finsler space F_{n}, which admits a CA-motion , the non-zero scalar function $\lambda(x, \dot{x})$ exists and satisfies the relation $(2,4) b$. In such case the relation (2.2) assumes the form

$$
\begin{equation*}
\lambda_{k} \delta_{j}^{i}+R_{j k}^{* i} \xi^{\prime}+\left.\lambda \Gamma_{j k}^{* *}\right|_{b} \dot{x}^{b}=0 \tag{3.1}
\end{equation*}
$$

where $\lambda_{k}=\lambda_{i k}$ is a gradient vector field.
Since the connection coefficient $\Gamma_{j k}^{\alpha_{i}}$ is homogeneous of degree zero in \dot{x}^{i}, the equation (3.1) reduces to

$$
\begin{equation*}
\lambda_{k} \delta_{j}^{i}+R_{j k l}^{* i} \xi^{\prime}=0 . \tag{3.2}
\end{equation*}
$$

Transvecting the above equation by ξ^{k}, it becomes

$$
\begin{equation*}
\lambda_{k} \delta_{j}^{i} \xi^{k}+R_{j k l}^{k} \xi^{k} \xi^{l}=0 \tag{3,3}
\end{equation*}
$$

The curvature tensor $R_{j l l}^{* j}$ is skew-symmetric with respect to the indices k, l, which causes vanishing of the second term and hence the equation (3.3) takes the form

$$
\begin{equation*}
\lambda_{k} \xi^{k}=0 \tag{3.4}
\end{equation*}
$$

Thus we state
Theorem 3.1: In a Finsler space F_{n}, which admits CA-motion, the vector fields ξ^{i} and λ_{i} are orthogonal to each other .

The contravariant vector ξ^{i} is independent of \dot{x}^{i} and the covariant δ derivative is homogeneous of degree zero in the direction argument so is the function λ. Hence we find

$$
\begin{equation*}
\left.\lambda\right|_{p} \dot{x}^{p}=0 . \tag{3.5}
\end{equation*}
$$

The Lie-derivative of the scalar function λ is expressed as

$$
\begin{equation*}
£ \lambda=\lambda_{l} \xi^{l}+\left.\lambda\right|_{l} \xi_{;}^{\prime} \dot{x}^{m} . \tag{3.6}
\end{equation*}
$$

In a Finsler space F_{n}, which admits CA-motion ,the relation (3.4) holds good and hence the equation $(3,6)$ becomes

$$
\begin{equation*}
£ \lambda=\lambda \mid \xi_{; m}^{\prime} \dot{x}^{m} \tag{3.7}
\end{equation*}
$$

In view of the equation (2.4) b ,the equation (3.7) yields

$$
\begin{equation*}
£ \lambda=\left.\lambda \lambda\right|_{m} \dot{x}^{m} . \tag{3.8}
\end{equation*}
$$

Applying (3.5) in the above equation, it reduces to

$$
\begin{equation*}
£ \lambda=0 . \tag{3.9}
\end{equation*}
$$

Hence we have
Theorem 3.2: In a Finsler space F_{n}, which admits CA-motion, the scalar function λ is Lie-invariant.

4. CP-MOTION IN A FINSLER SPACE

The infintesimal transformation (1.1) defines a projective motion if it transforms the system of geodesics into that of geodesics. The necessary and sufficient condition for (1.1) to be a projective motion is that the Liederivative of $\Gamma_{j k}^{* j}$ must satisfy

$$
\begin{equation*}
£ \Gamma_{j k}^{+i}=2 \delta_{(j}^{i} p_{k)}^{*}+\dot{x}^{i} p_{j k}^{*}, \tag{4.1}
\end{equation*}
$$

where

$$
\begin{equation*}
p_{k}^{*}=\dot{\partial}_{k} p^{*}, p_{j k}^{*}=\dot{\partial}_{j} p_{k}^{*} \tag{4.2}
\end{equation*}
$$

for some homogeneous scalar function $p^{*}(x, \dot{x})$ of degree one in \dot{x}^{i}. For the lomogeneity property of p_{j}^{*} and $p_{j k}^{*}$, they also satisfy

$$
\begin{equation*}
p_{j}^{*} \dot{x}^{j}=p^{*}, \quad p_{j k}^{*} \dot{x}^{k}=0 . \tag{4.3}
\end{equation*}
$$

Let us assume that there exists a projective motion with contra field. In such case the infinitesimal transformation(1.1) will also satisfy the condition (2.4).

Definition 4.1: When a Finsler space F_{n} admitting the projective motion also satisfied the condition (2.4), then the motion is called projective motion with contra field. We denote such motion as CP-motion.
In view of equations (1.5) and (4.1), we obtain

$$
\begin{equation*}
\xi_{; j ; k}^{i}+R_{j k k}^{* i} \xi^{\prime}+\left.\Gamma_{j k}^{* i}\right|_{a} \xi_{; ; b}^{a} \dot{x}^{b}=2 \delta_{(j}^{i} p_{k)}^{*}+\dot{x}^{I} p_{j k}^{*} . \tag{4.4}
\end{equation*}
$$

In case of CP -motion, the equation (4.4) takes the form

$$
\begin{equation*}
\lambda_{k} \delta_{j}^{i}+R_{j k}^{w_{i}} \xi^{\prime}=2 \delta_{(,}^{i} p_{k)}^{*}+\dot{x}^{\prime} p_{j k}^{*}, \tag{4.5}
\end{equation*}
$$

since $\Gamma_{j k}^{* i}$ is homogeneous function of degree zero in \dot{x}^{i} and $\lambda_{k}=\lambda_{; k}$ is a gradient vector field.
Transvecting the equation (4.5) by ξ^{k}, we have

$$
\begin{equation*}
\lambda_{i} \xi^{k} \delta_{j}^{i}+R_{j k}^{* i} \xi^{k} \xi^{l}=\delta_{j}^{i} p_{k}^{*} \xi^{k}+p_{j}^{*} \xi^{i}+\dot{x}^{i} p_{j k}^{*} \xi^{k} . \tag{4.6}
\end{equation*}
$$

We notice that the skew-symmetry property of $R_{j k l}^{* i}$ with respect to the indices k and 1 causes vanishing of the second term in the left hand side of the equation (4.6) and hence we have

$$
\begin{equation*}
\lambda_{k} \xi^{k} \delta_{j}^{i}=\delta_{j}^{i} p_{k}^{*} \xi^{k}+p_{j}^{*} \xi^{k}+\dot{x}^{i} p_{j k}^{*} \xi^{k} \tag{4.7}
\end{equation*}
$$

Contracting the indices i and j and using the latter part of (4.3), the above equation reduces to

$$
\begin{equation*}
\lambda_{k} \xi^{k}=\left(1+\frac{1}{n}\right) p_{k}^{*} \xi^{k} \tag{4.8}
\end{equation*}
$$

Accordingly we sitate
Theorem 4.1: In a Finsler space F_{n}, which admits CP-motion , the scalar functions λ_{k} and p_{k}^{*} satisfy the relation (4.8).

Let us assume that the projective scalar function p_{k}^{*} is orthogonal to ξ^{k}, that is

$$
\begin{equation*}
p_{k}^{*} \xi^{k}=0 \tag{4.9}
\end{equation*}
$$

Then in view of (4.9), the equation (4.8) reduces to (3.4), which implies that the motion is CA-motion from Theorem 3.1.

Conversely, if the relation (3.4) is true, the equation (4.7) takes the form

$$
\begin{equation*}
\delta_{j}^{i} p_{k}^{*} \xi^{k}+p_{i}^{*} \xi^{i}+\dot{x}^{i} p_{j k}^{*} \xi^{k}=0 \tag{4.10}
\end{equation*}
$$

Contraction of the indices i and j in the equation (4.10) yields

$$
\begin{equation*}
(n+1) p_{k}^{*} \xi^{k}=0 \tag{4.11}
\end{equation*}
$$

since P_{j}^{*} is homogeneous of degree zero in \dot{x}^{i}.
Frorn the above equation we conclude that the projective scalar function p_{k}^{*} is or thogonal to the contravariant vector ξ^{k}. Thus we have
Theorem 4.2: In a Finsler space F_{n}, the necessary and sufficient condition for CP-motion to be a CA-motion is that the projective scalar function p_{k}^{*} is orthogonal to the vector function ξ^{k}.

REFERENCES

[1] H. Hiramatu: Group of homothetic transformations in a Finsler space, Tensor (N.S), 3(1954), 131-143.
[2] R.B.Misra and F.M.Meher : On the existence of affine motion in a $H / R-F_{n}$, Indian J. F'ure app. Math 3(1972), 219-22.5 .
[3] R.B.Misra and F.M.Meher : CA-motion in a $\mathrm{Sp}-F_{n}$, Indian J. Pure app.Math., 6(1975), 522-526.
[4] S.P.Singh : On the curvature collineation in Finsler spaces II,Tensor (N.S),44(1987), 113-117.
[s] S.P.Singh and J.K.Gatoto: On projective motion in Finsler spaces II, Quaestiones Mathematicae (accepted).
[6] K.Takano : Affime motion in non-R.iemannian K^{*}-spaces II, Tensor(N.S), 11 (1961), 137-143.
[7] K.Yano : The theory of Lie-derivatives and its applications, NorthHolland Publishing Co.,Amsterdam,(1957).

Department of Mathematics Egerton University, P.O.Box 536, Njoro,KENYA. e-mail: eu-cs@net 2000 ke.com

