# Special concircular projective curyature collineation in recurrent Finsler space 

S.P. Singh

A concircular transformation in Riemannian spaces was introduced and studied in series of papers by K. Yano $[1]^{1)}$, M. Okumura [4] has developed a similar transformation in non- Riemannian symmetric spaces. Affine motion in recurrent Finsler space was discussed by R.S. Sinha [7]. Present author $[9,10]$ has studied curvature collineation in Finsler spaces. The purpose of present paper is to develop special concircular projective curvature collineation in recurrent Finsler space.

## 1. Preliminaries

We consider an n-dimerisional Finsler space $F_{n}$ with Berwald's connection parameters $G_{j k}^{i}(x, \dot{x})^{2)}$. The curvature tensor field $H_{j k h}^{i}$, arising from this connection parameter, is homogeneous function of degree zero in $\dot{x}$ and hence we have
$H_{j k h}^{i} \dot{x}^{J}=H_{k h}^{i}$,
(1.2) (a)

$$
\begin{equation*}
\dot{\partial}_{l} H_{j k h}^{i} \dot{x}^{j}=\dot{\partial}_{l} H_{j k h}^{i} \dot{x}^{l}=0^{3)} \tag{1.1}
\end{equation*}
$$

The commutation formulae involving the curvature tensor $H_{j k h}^{i}$ are given by [3]
(1.2) (b)

$$
2 T_{[(h)(k)]}=T_{(h)(k)}-T_{i k)(n)}=-\dot{\partial}_{i} T H_{i k k}^{i}
$$

(c)

$$
\begin{equation*}
2 T_{j(h)(r)]}^{i}=-\dot{\partial}_{r} T_{j}^{i} H_{h k}^{r}-T_{r}^{i} H_{j h k}^{r}+T_{j}^{r} H_{r h k}^{i} \tag{1.2}
\end{equation*}
$$

${ }^{1}$ ) The numbers in brackets refer to the references at the end of this paper
2) The line element $\left(x^{i}, \dot{x}^{i}\right)$ is briefly represented by $(x, \dot{x})$.

$$
\text { 3) } \dot{\partial}_{1}=\partial / \partial \dot{x}^{l}, \quad \partial_{1}=\partial / \partial x^{l}
$$

where index in round bracket () represents covariant differentiation in the sense of Berwald [3].It satisfies the following identities:

$$
\begin{align*}
H_{j k h}^{i} & =-H_{j h k}^{i},  \tag{1.3}\\
H_{j k i}^{i} & =H_{j k}, \\
H_{j k h}^{l} & =2 H_{[h k]},
\end{align*}
$$

A non-flat Finsler space $F_{n}$ in which there exists a non-zero vector field, whose components $K_{m}$ are positively homogeneous functions of degree zero in $\dot{x}^{\prime}$, such that the curvature tensor field $E H_{j k h}^{i}$ satisfied the relation

$$
\begin{equation*}
H_{j, k h(m)}^{i}=K_{m} H_{j, k h}^{i}, \tag{1.6}
\end{equation*}
$$

is called a recurrerat Finsler space $[6,8]$. We denote such a Finsler space by $F_{n}^{*}$.

Let us consider a point transformation

$$
\begin{equation*}
\bar{x}^{i}=x^{i}+\varepsilon v^{i}(x), \tag{1.7}
\end{equation*}
$$

where $v^{i}(x)$ is a contravariant vector field. Then the Lie-derivative of a tensor $T_{j}^{i}(x, \dot{x})$ and the connection coefficients are characterised by [2]

$$
\begin{equation*}
£ T_{j}^{i}=v^{h} T_{j(h)}^{i}-T_{j}^{h} \nu_{(h)}^{i}+T_{h}^{i} v_{(j)}^{i}+\left(\dot{\partial}_{h} T_{j}^{i}\right) \nu_{(s)}^{h} \dot{x}^{s} \tag{1.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\dot{£} G_{j k}^{i}=v_{(j)(k)}^{i}+H_{j k h}^{i} v^{h}+G_{j k i}^{i} v_{(, \cdot)}^{h} \dot{x}^{r} \tag{1.9}
\end{equation*}
$$

respectively. The Lie-derivative of the curvature tensor $H_{j k h}^{i}$ is given by

$$
\begin{align*}
£ H_{j k h}^{i}= & v^{l} H_{j k k(l)}^{i}-H_{j k h}^{i} v_{(l)}^{i}+H_{l k k}^{i} v_{(j)}^{i}+H_{j l h}^{i} v_{(k)}^{\prime}+  \tag{1.10}\\
& +H_{j k k}^{i} v_{(k)}^{i}+\left(\dot{\partial}_{1} F_{j k h}^{i}\right) v_{(m i}^{i} \dot{x}^{\prime \prime \prime} .
\end{align*}
$$

The processes of Lie-differentiation and other differentiations are connected by

$$
\begin{align*}
\left(£ T_{j k(l)}^{i}\right)-\left(£ T_{j k}^{i}\right)_{(l)}= & \left(£ G_{k ;}^{i}\right) T_{j k}^{r}-\left(£ G_{j l}^{r}\right) T_{v k}^{i}-\left(£ G_{k l}^{r}\right) T_{j r}^{i}  \tag{1.11}\\
& -\left(£ G_{l p}^{r}\right) \dot{x}^{p} \partial_{r} T_{j k}^{i},
\end{align*}
$$

$$
\begin{array}{r}
\left(£_{j h}^{i}\right)_{(k)}-\left(£ G_{k h}^{i}\right)_{(j)}=£ H_{h j k}^{i}+\left(£ G_{k l}^{r}\right) \dot{x}^{\prime} G_{r j h}^{\prime}, \\
\dot{\partial}_{l}\left(£ T_{j k}^{\prime}\right)-£\left(\dot{\partial_{l}} T_{j k}^{i}\right)=0 . \tag{1.13}
\end{array}
$$

We also consider an infinitesimal transformation similar to that of M . Okumura [5] of the form
(1.14) $\quad \bar{x}^{i}=x^{i}+\varepsilon v^{i}, \quad v_{(k)}^{i}=\lambda \delta_{k}^{i}$,
where $\lambda(x, \dot{x})$ is a scalar function. Such a transformation is called a special concircular: transformation.

The necessary and sufficient condition that the transformation (1.7) be a projective motion is that the Lie-derivative of $G_{j k}^{i}$ is given by

$$
\begin{equation*}
\mathfrak{£} G_{j k}^{i}=2 \delta_{(j}^{l} p_{k)}+\dot{x}^{i} p_{j k}, \quad p_{k}=\dot{\partial}_{k} p, \quad p_{j k}=\dot{\partial}_{j} p_{k}, \tag{1.15}
\end{equation*}
$$

where $p(x, \dot{x})$ is homogeneous scalar function of degree one in $\dot{x}^{i}$ and $(j k)$ represents symmetric part.

## 2. Special concircular projective curvature collineation

Detinition : In a recurrent Finsler space $F_{n}^{*}$, if the curvature tensor field $H_{j k n}^{i}$ satisfies the relation

$$
\begin{equation*}
\mathfrak{£} H_{j k h}^{i}=0, \tag{2,1}
\end{equation*}
$$

where $£$ represents Lie-derivative defined by the transformation (1.14), which defines a projective motion, then the transformation (1.14) is called the special concircular projective H -curvature collineation.

If a special concircular transformation defines a projective motion, the equation (1.9) in view of (1.14) and (1.15) yields

$$
\begin{equation*}
\delta_{k}^{i} \lambda_{(j)}+H_{j k k}^{i}, v^{h}=2 \delta_{(j}^{i} p_{k)}+\dot{x}^{i} p_{j k}, \tag{2.2}
\end{equation*}
$$

since $G_{j k}^{i}$ is homogeneous function of degree zero in $\dot{x}^{i}$. Contracting the above equation with respect to the indices $i, j$ and using (1.5) and (1.15), we find

$$
\begin{equation*}
\left.\lambda_{(k)}+2 H_{[j k k]}\right]^{h}=(n+1) p_{k} . \tag{2.3}
\end{equation*}
$$

w here $[h k]$ represents skew-symmetric part.
Now if we contract (2.2) with respect to indices $i, k$, we obtain

$$
\begin{equation*}
n \lambda_{(j)}-H_{j h} \nu^{h}=(n+1) p_{j}, \tag{2.4}
\end{equation*}
$$

in view of (1.3), (1.4) and (1.15).
Eliminating $p_{j}$ from the equations (2.3) and (2.4), we get

$$
\begin{equation*}
H_{h j} v^{h}+(1-n) \lambda_{(j)}=0 \tag{2.5}
\end{equation*}
$$

If $\lambda$ follows invariance property with respect to Berwald's covariant differentiation, then the projective motion satisfies the following relations:
(2.6)(a)
$H_{l i j} \nu^{h}=0$,
(b) $H_{h i} v^{h}+(n+1) p_{j}=0$
from the equations (2.4) and (2.5).
Applying the equation (1.15) and the homogeneity property of $G_{j / k}^{l}$ in the equation (1.12), it yields

$$
\begin{equation*}
E H H_{h j k}^{i}=2\left\{\delta_{h}^{i} p_{[j(k)]}+\delta_{[j}^{i} p_{|h|(k)]}+\dot{x}^{i} p_{[j|h|(k)]}\right\}, \tag{2.7}
\end{equation*}
$$

where the index between two parallel bars is unaffected when we consider skew -symmetric part.
Contracting the equation (2.7) with respect to indices $i$ and $h$, we obtain

$$
\begin{equation*}
£_{[k j]}=(n+1) p_{[j(k)]} . \tag{2.8}
\end{equation*}
$$

Since for the infinitesimal transformation (1.7), the vector $\nu^{i}(x)$ is Lieinvariant, we have

$$
\begin{equation*}
\mathfrak{£} v^{i}=0 . \tag{2.9}
\end{equation*}
$$

Trensvecting the equation (2.8) by $v^{k}$ and noting (2.6) (a) and (2.9), we find

$$
\begin{equation*}
£\left(H_{j k} \nu^{k}\right)=2(n+1) p_{[k()]} \nu^{k}, \tag{2.10}
\end{equation*}
$$

which yields

$$
\begin{equation*}
£_{j}=2 p_{[/(k)]} \nu^{k} \tag{2.11}
\end{equation*}
$$

in view of (2.6) (b).

Applying (1.8) for $p_{j}$ and noting (1.14), it gives

$$
\begin{equation*}
£ p_{j}=p_{j(l)} v^{\prime}+\lambda p_{j} \tag{2.12}
\end{equation*}
$$

Hence from the equations (2.11) and (2.12), we get

$$
\begin{equation*}
p_{k(j)} \nu^{k}+\lambda p_{j}=0, \tag{2.13}
\end{equation*}
$$

which immediately reduces to

$$
\begin{equation*}
\left(p_{k} v^{k}\right)_{(j)}=0 \tag{2.14}
\end{equation*}
$$

in view of (1.14).
Transvecting (2.12) by $v^{j}$ and using (1.14), (2.9) and (2.14), we obtain

$$
\begin{equation*}
\mathfrak{£}\left(p_{j} v^{j}\right)=0, \tag{2,15}
\end{equation*}
$$

which is a very useful result.
Also in viers of (1.6) and (1.14), the equation (1.10) assumes the form

$$
\begin{equation*}
£ H_{j t h}^{i}=\left(K_{i} v^{t}+2 \lambda\right) H_{j k h}^{i} \tag{2.16}
\end{equation*}
$$

Contracting the equation $(2,16)$ with respect to the indices $i, h$ and then transvecting the results by $\nu^{k}$, we find

$$
\begin{equation*}
\varepsilon\left(H_{j k} v^{k}\right)=\left(K_{l} v^{i}+2 \lambda\right) H_{j k} v^{k} \tag{2.17}
\end{equation*}
$$

in view of (1.14) and (2.9).
When we apply (2.6) (b) in the above equation, it gives

$$
\begin{equation*}
\sum_{p_{j}}=\left(K_{l} v^{l}+2 \lambda\right) p_{j} . \tag{2.18}
\end{equation*}
$$

Transvecting (2.18) by $v^{j}$ and using (2.9) and (2.15); we have

$$
\begin{equation*}
\left(K_{l} v^{l}+2 \lambda\right) p_{j} v^{J}=0 \tag{2.19}
\end{equation*}
$$

which implies either
(2.20)

$$
K_{l} \nu^{l}+2 \lambda=0
$$

or

$$
\begin{equation*}
p_{j} v^{j}=0 . \tag{2.21}
\end{equation*}
$$

In view of (2.20), the equation (2.16) immediately reduces to

$$
£ H_{j k h}^{i}=0 .
$$

Thus we state
Theorem 2.1: In a recurrent Finsler space $F_{n}^{*}$, the special concircular transformation (1.14), which admits projective motion, is the special concircuiar projective H-curvature collineation.

Contraction of (2.1) with respect to indices $i, j$ yields

$$
\begin{equation*}
\mathfrak{£} H_{[k w]}=0 \tag{2.22}
\end{equation*}
$$

in view of (1.5).
Applying (2.22) in the equation (2.8), we get the relation

$$
\begin{equation*}
p_{h(k)}=p_{k(h)} . \tag{2.23}
\end{equation*}
$$

Hence we have
Corollary 2.1: In a recurrent Finsler space $F_{n}^{*}$, which admits special concircular projective H -curvature collineation, the vector field $p_{j}$ behaves like a gradient vector field,

Applying the identity (1.13) for $H_{j k h}^{i}$ and using (2.1), it yields

$$
\begin{equation*}
e\left(\dot{\partial}_{l} H_{j k h}^{i}\right)=0 \tag{2.24}
\end{equation*}
$$

and hence we state
Lemma 2.1: In recurrent Finsler space $F_{n}^{*}$, which admits special concircular projective H -curvature collineation, the partial derivative of the curvature tensor $H_{j k l}^{i}$ is Lie-invariant.

By virtue of the commutation formula (1.2)' (c) for the curvature tensor $H_{j k k}^{i}$ : we find
(2.25) $2 H_{j k k[l()(m)]}^{i}=-\dot{\partial}_{r} H_{j k h}^{i} H_{l m}^{r}+H_{j k h}^{r} H_{r l m}^{i}-H_{r k h}^{i} H_{j l m}^{r}-H_{j, k h}^{i} H_{k \mid m}^{r}-H_{j k r}^{i} H_{h l m}^{r}$.

Taking Lie-derivative of both sides of the above equation and applying (2.1) and usirg Lemma 2.1, it reduces to

$$
\begin{equation*}
\mathfrak{f}\left(H_{j k k j(l)(m)]}^{i}\right)=0 . \tag{2.26}
\end{equation*}
$$

Accordingly we have
Theorem 2.2: In a recurrent Finsler space $F_{n}^{*}$, which admits special concircular projective H-curvature collineation, the relation (2.26) holds.

The partial differentiation of (2.16) with respect to $\dot{x}^{\prime m}$ yields

$$
\begin{equation*}
\left(v^{\prime} \dot{\partial}_{m} K_{l}+2 \dot{\partial}_{m} \lambda\right) H_{j k l}^{i}+\left(K_{l} v^{l}+2 \lambda\right) \dot{\partial}_{m} H_{j k l}^{i}=0 \tag{2.27}
\end{equation*}
$$

in view of lemma 2.1.
Transvecting the equation (2.27)by $\dot{x}^{j}$ and using (1.2) (a), we obtain

$$
\begin{equation*}
\left(v^{\prime} \dot{\partial}_{m} K_{l}+2 \dot{\partial}_{m} \lambda\right) H_{k h}^{i}=0 . \tag{2.28}
\end{equation*}
$$

Since the space $F_{n}^{*}$ is non-flat, the equation (2.28) implies

$$
\begin{equation*}
v^{\prime} \dot{\partial}_{m} K_{l}+2 \dot{\partial}_{m} \lambda=0 \tag{2.29}
\end{equation*}
$$

Transvection of the above equation by $\dot{x}^{\prime m}$ yields

$$
\begin{equation*}
\dot{x}^{m} \dot{\partial}_{m} \lambda=0, \tag{2.30}
\end{equation*}
$$

since $K_{l}$ is homogeneous function of degree zero in $\dot{x}^{\prime}$.
Thus we state
Theorem 2.3: In a recurrent Finsler space $F_{n}^{*}$, which admits special concircular projective H -curvature collineation, the scalar function $\lambda$ is homogeneous function of degree zero in $\dot{x}^{i}$.

## REFERENCES

[1] YANO, K : Concircular geometry I, II, III, IV, V, Proc. Imp. Acad. Tokyo, 16(1940), pp 195-200, 354-360, 442-448, 505-511, 18 (1942) pp 446-451.
[2] YANO, K : Theory of Lie derivative and its applications, North Holland (1955).
[3] RUND, H: The Differential Geometry of Finsler spaces, SpringerVerlag (1959).

## S.P. Singh

[4] OKUMURA, M : Concircular affine motion in non-Riemanian symmetric spaces, Tensor N.S. 12 (1962) pp 17-23.
[5] OKUMURA, M : On some types of connected spaces with concircular vector fields, Tensor N.S. , 12 (1962) pp 33-46.
[6] MOOR, A : Untersuchungen $v$ ber Finsler-rav me Von rekurrenter Kru mmungs, Tensor N.S. , 13 (1963) pp 1-18.
[7] SINHA R. S. : Affine motion in recurrent Finsler spaces, Tensor N.S., 20 (1969) pp 261-264.
[8] SINHA, E3.B and SINGH, S.P : On recurrent Finsler spaces, Roum. Math, Pures Appl., 16 (1971) pp 977-986.
[9] SINGH, S.P. : On curvature collineation in Finsler spaces, Publ. de 1' Inst. Math Yugoslavia, 36 (1984) pp 85-89.
[10] SINGH, S.P.: On the curvature collineation in Finsler spaces II, Tensor N.S. 44 (1987) pp 113-117

Department of Mathematics
Egerton University
P.O Box 536, Njoro

Kenya
e-mail: eu-cs @net2000ke.com

