ON THE GAP SERIES AND LIOUVILLE NUMBERS

GÜLŞEN YILMAZ

ABSTRACT. In this paper it is proved that the values of some gap series with rational coefficients are either a Liouville number or a rational number for the arguments from the set of Liouville numbers under certain conditions. In this work the method which is used in [4] is extended to the gap series.

INTRODUCTION

Mahler [3] divided in 1932 the complex numbers into four classes A, S, T, U as follows.

Let $P(x) = a_n x^n + \ldots + a_1 x + a_0$ be a polynomial with integer coefficients. The number $H(P) = \max\{|a_n|, \ldots, |a_0|\}$ is called the height of P(x). Let ξ be a complex number and

$$\omega_n(H,\xi) = \min\{|P(\xi)| : \text{ degree of } P \le n, \ H(P) \le H, \ P(\xi) \ne 0\}$$

where n and H are natural numbers. Let

$$\omega_n(\xi) = \limsup_{H \to \infty} \frac{-\log \omega_n(H, \xi)}{\log H}$$
,

and

$$\omega(\xi) = \limsup_{n \to \infty} \frac{\omega_n(\xi)}{n}$$
.

The inequalities $0 \le \omega_n(\xi) \le \infty$ and $0 \le \omega(\xi) \le \infty$ hold. From $\omega_{n+1}(H,\xi) \le \omega_n(H,\xi)$ we get $\omega_{n+1}(\xi) \ge \omega_n(\xi)$. If for an index $\omega_n(\xi) = +\infty$, then $\mu(\xi)$ is defined as the smallest of them; otherwise $\mu(\xi) = +\infty$. So μ is uniquely determined and both of $\mu(\xi)$ and $\omega(\xi)$ cannot be finite. Therefore there are the following four possibilities for ξ . ξ is called

$$A - \text{number if} \qquad \omega(\xi) = 0 \;,\; \mu(\xi) = \infty,$$

$$S - \text{number if} \qquad 0 < \omega(\xi) < \infty \;,\; \mu(\xi) = \infty,$$

$$T - \text{number if} \qquad \omega(\xi) = \infty \;,\; \mu(\xi) = \infty,$$

$$U - \text{number if} \qquad \omega(\xi) = \infty \;,\; \mu(\xi) < \infty.$$

The class A is composed of all algebraic numbers. The transcendental numbers are divided into the classes S, T, U. ξ is called a U-number of degree m ($1 \le m$) if $\mu(\xi) = m$. U_m denotes the set of U-numbers of degree m. The elements of the subclass U_1 are called Liouville numbers. A real number ξ is called a Liouville number if and only if for every integer n > 0 there exists integers p_n, q_n ($q_n > 1$) with

$$0 < \left| \xi - \frac{p_n}{q_n} \right| < q_n^{-n}.$$

Koksma [1] set up in 1939 another classification of complex numbers. He divided them into four classes A^* , S^* , T^* , U^* . Let ξ be a complex number and

$$\omega_n^*(H,\xi) = \min\{|\xi - \alpha| \ : \ \text{degree of} \ \alpha \leq n \, , \, H(\alpha) \leq H \, , \, \alpha \neq \xi\} \ \ ,$$

where α is an algebraic number. Let

$$\omega_n^*(\xi) = \limsup_{H \to \infty} \frac{-\log(H\omega_n^*(H,\xi))}{\log H}$$
,

and

$$\omega^*(\xi) = \limsup_{n \to \infty} \frac{\omega_n^*(\xi)}{n}$$
.

We have $0 \le \omega_n^*(\xi) \le \infty$ and $0 \le \omega^*(\xi) \le \infty$. If for an index $\omega_n^*(\xi) = +\infty$, then $\mu^*(\xi)$ is defined as the smallest of them; otherwise $\mu^*(\xi) = +\infty$. So μ^* is uniquely determined and both of $\mu^*(\xi)$ and $\omega^*(\xi)$ cannot be finite. There are the following four possibilities for ξ . ξ is called

$$\begin{split} A^* &- \text{number if} & \omega^*(\xi) = 0 \;,\; \mu^*(\xi) = \infty, \\ S^* &- \text{number if} & 0 < \omega^*(\xi) < \infty \;,\; \mu^*(\xi) = \infty, \\ T^* &- \text{number if} & \omega^*(\xi) = \infty \;,\; \mu^*(\xi) = \infty, \\ U^* &- \text{number if} & \omega^*(\xi) = \infty \;,\; \mu^*(\xi) < \infty. \end{split}$$

 ξ is called a U^* -number of degree m $(1 \le m)$ if $\mu^*(\xi) = m$. The set of U^* -numbers of degree m is denoted by U_m^* .

Wirsing [5] proved that both classifications are equivalent, i.e. A-, S-, T-, U-numbers are as same as A^* -, S^* -, T^* -, U^* -numbers. Moreover every U-number of degree m is also a U^* -number of degree m and conversely.

LeVeque [2] proved that the subclass U_m is not empty.

Theorem. Let

$$f(z) = \sum_{i=0}^{\infty} c_{n_i} z^{n_i}$$

ON THE GAP SERIES AND LIOUVILLE NUMBERS

be a gap series with non-zero rational coefficients $c_{n_i} = \frac{b_{n_i}}{a_{n_i}}$ (a_{n_i}, b_{n_i}) integers; $b_{n_i} \neq 0$ and $a_{n_i} \geq 1$) satisfying the following conditions

$$\lim_{i \to \infty} \frac{n_{i+1}}{n_i} = +\infty$$

and

$$\limsup_{i \to \infty} \frac{\log A_{n_i}}{n_i} < +\infty$$

where $A_{n_i} = [a_{n_0}, \dots, a_{n_i}].$

Furthermore let ξ be a Liouville number for which the following property holds:

 ξ has an approximation with rational numbers p_{n_i}/q_{n_i} $(q_{n_i} > 1)$ so that the following inequality holds for sufficiently large i

(3)
$$\left| \xi - \frac{p_{n_i}}{q_{n_i}} \right| < q_{n_i}^{-n_i \omega(n_i)} \quad \left(\lim_{i \to \infty} \omega(n_i) = \lim_{i \to \infty} \frac{n_{i+1}}{n_i \log q_{n_i}} = +\infty \right).$$

We assume that the radius of convergence R_f of the gap series is positive and the inequality $0 < |\xi| < R_f$ holds. Then $f(\xi)$ is either a Liouville number or a rational number.

Proof. From (2), we have the inequality which we will use later

$$(4) A_{n_i} \le A^{n_i}$$

for sufficiently large i where A > 0 is a suitable constant.

Now we consider the polynomials

$$f_k(z) = \sum_{i=0}^k c_{n_i} z^{n_i}$$
 $(k = 1, 2, 3, ...).$

Since

$$\left| f(\xi) - f_k \left(\frac{p_{n_k}}{q_{n_k}} \right) \right| \le \left| f(\xi) - f_k(\xi) \right| + \left| f_k(\xi) - f_k \left(\frac{p_{n_k}}{q_{n_k}} \right) \right|$$

we can determine an upper bound for $|f(\xi) - f_k(\xi)|$ and $|f_k(\xi) - f_k(\xi)|$. The following equality holds.

(5)
$$f_k(\xi) - f_k\left(\frac{p_{n_k}}{q_{n_k}}\right) = \sum_{i=0}^k c_{n_i}\left(\xi - \frac{p_{n_k}}{q_{n_k}}\right) \cdot \left(\xi^{n_i-1} + \xi^{n_i-2}\frac{p_{n_k}}{q_{n_k}} + \dots + \left(\frac{p_{n_k}}{q_{n_k}}\right)^{n_i-1}\right)$$

From (3) it follows that, for sufficiently large k

(6)
$$\left| \frac{p_{n_k}}{q_{n_k}} \right| \le |\xi| + 1.$$

According to the Cauchy inequality, we have

(7)
$$|c_{n_i}| \le \frac{M}{\rho^{n_i}}$$
 $(i = 0, 1, 2, \ldots)$

 $(|\xi|<\rho< R_f,\ \rho=\frac{|\xi|+R_f}{2},\ M$ denotes the maximum value of |f(z)| on the $|z|=\rho.$ If $R_f=+\infty,\ \rho$ is to be chosen as $\rho>|\xi|.$)
It follows from (7) that

(8)
$$|c_{n_i}| \le MB^{n_k} \le (M_1B)^{n_k} = M_2^{n_k}$$

where $\max(1, \frac{1}{\rho}) = B$, $\max(1, M) = M_1$, $M_2 = M_1B$. Thus, using (3), (5), (6) and (8) we get for sufficiently large k

$$\left| f_k(\xi) - f_k\left(\frac{p_{n_k}}{q_{n_k}}\right) \right| \leq q_{n_k}^{-n_k\omega(n_k)} \sum_{i=0}^k |c_{n_i}| \left| \xi^{n_i-1} + \xi^{n_i-2} \frac{p_{n_k}}{q_{n_k}} + \dots + \left(\frac{p_{n_k}}{q_{n_k}}\right)^{n_i-1} \right|$$

$$\leq q_{n_k}^{-n_k\omega(n_k)} (k+1) M_2^{n_k} n_k (|\xi|+1)^{n_k-1}$$

$$\leq q_{n_k}^{-\frac{n_k+1}{\log q_{n_k}}} n_k^2 M_2^{n_k} (|\xi|+1)^{n_k}.$$

We have from (1) $\lim_{k\to\infty} n_k = +\infty$ and so it follows that for sufficiently large k

$$n_k^2 \leq c^{n_k}$$

where c > 1 is a suitable constant. Therefore, we get

$$\left| f_k(\xi) - f_k\left(\frac{p_{n_k}}{q_{n_k}}\right) \right| \le q_{n_k}^{-\frac{n_{k+1}}{\log q_{n_k}}} c_1^{n_k},$$

where $c_1 = cM_2(|\xi| + 1)$. Using (3) and (4) we deduce that

$$\left| f_k(\xi) - f_k \left(\frac{p_{n_k}}{q_{n_k}} \right) \right| \leq \frac{1}{2} (q_{n_k}^{n_k} A^{n_k})^{-\omega(n_k)}$$

$$\leq \frac{1}{2} (q_{n_k}^{n_k} A_{n_k})^{-\omega(n_k)}$$
(9)

for sufficiently large k.

Now we can determine an upper bound for $|f(\xi) - f_k(\xi)|$. From (7) and $|\xi| < \rho < R_f$, it follows that

$$|f(\xi) - f_k(\xi)| \leq \sum_{i=k+1}^{\infty} |c_{n_i}| |\xi|^{n_i}$$

$$\leq \frac{M}{\rho^{n_{k+1}}} |\xi|^{n_{k+1}} \left(1 + \frac{|\xi|}{\rho} + \frac{|\xi|^2}{\rho^2} + \cdots \right)$$

$$= \left(\frac{|\xi|}{\rho} \right)^{n_{k+1}} \frac{M}{1 - \frac{|\xi|}{\rho}} = \frac{c_2}{c_3^{n_{k+1}}}$$

where $c_2 = \frac{M}{1 - \frac{|\xi|}{2}} > 0$, $c_3 = \frac{\rho}{|\xi|} > 1$.

Thus, using (3) and (4) we have for sufficiently large k

$$|f(\xi) - f_k(\xi)| \leq \frac{1}{2} (A^{n_k} q_{n_k}^{n_k})^{-\omega(n_k)\lambda}$$

$$\leq \frac{1}{2} (A_{n_k} q_{n_k}^{n_k})^{-\omega(n_k)\lambda}$$
(10)

where λ is to be chosen as $0 < \lambda < \min(\log c_3, 1)$ and so it follows from (9) and (10)

$$\left| f(\xi) - f_k \left(\frac{p_{n_k}}{q_{n_k}} \right) \right| \le (q_{n_k}^{n_k} A_{n_k})^{-\omega(n_k)\lambda}$$

for sufficiently large k. For $\omega(n_k) \to +\infty$ we have $\omega(n_k)\lambda \to +\infty$. Moreover

$$f_k\left(\frac{p_{n_k}}{q_{n_k}}\right) = \sum_{i=0}^k c_{n_i} \left(\frac{p_{n_k}}{q_{n_k}}\right)^{n_i} = \frac{h_{n_k}}{A_{n_k} q_{n_k}^{n_k}} \qquad (k = 1, 2, 3, \dots)$$

are rational numbers with h_{n_k} integers. It follows from (11) that

$$\lim_{k \to \infty} f_k' \left(\frac{p_{n_k}}{q_{n_k}} \right) = f(\xi).$$

If the sequence $\left\{f_k\left(\frac{p_{n_k}}{q_{n_k}}\right)\right\}$ is constant then $f(\xi)$ is a rational number. Otherwise $f(\xi)$ is a Liouville number.

Example. We consider the number

$$\xi = \sum_{i=0}^{\infty} \frac{1}{a^{n_i}}$$

with $n_i = (i!)^{i!}$, a > 10 an integer. Because of Theorem 1 in [6] we know that ξ is a Liouville number.

The conditions of Theorem are satisfied for the following coefficients: $b_{n_i} = 1$, $a_{n_i} = a^{n_i}$ with $n_i = (i!)^{i!}$ (i = 0, 1, 2, ...), a > 10 an integer. For these coefficients we obtain

$$\lim_{i \to \infty} \frac{n_{i+1}}{n_i} = +\infty, \quad \lim_{i \to \infty} \frac{\log A_{n_i}}{n_i} < +\infty$$

where $A_{n_i} = [a_{n_0}, a_{n_1}, \dots, a_{n_i}]$ and so we have the conditions (1) and (2). Furthermore it follows for sufficiently large i

$$\left|\xi - \frac{p_{n_i}}{q_{n_i}}\right| < q_{n_i}^{-n_i \omega(n_i)} \quad \left(\lim_{i \to \infty} \omega(n_i) = \lim_{i \to \infty} \frac{n_{i+1}}{n_i \log q_{n_i}} = +\infty\right)$$

where $q_{n_i} = a_i^{n_i}$, $p_{n_i} = q_{n_i} \sum_{\nu=0}^i a^{-n_{\nu}}$. This is the condition (3). For this ξ the inequality $0 < |\xi| < R_f$ is satisfied. Thus the conditions of Theorem are satisfied for the ξ and

$$f(z) = \sum_{i=0}^{\infty} \frac{1}{a^{n_i}} z^{n_i}.$$

Therefore $f(\xi)$ is either a Liouville number or a rational number.

REFERENCES

- [1] KOKSMA, J.F.: Über die Mahlersche Klasscneinteilung der transzendenten Zahlen und die Approximation komplexer Zahlen durch algebraische Zahlen, Monatsh. Math. Physik, 48 (1939), 176-189.
- [2] LeVEQUE, W.: On Mahler's U-Numbers, London Math. Soc., 28 (1953), 220-229.
- [3] MAHLER, K.: Zur Approximation der Exponentialfunktion und des Logarithmus I, J. reine angew. Math., 166 (1932), 118-136.
- [4] ORYAN, M.H.: On the Power Series and Liouville Numbers, Doğa Tr. J. of Mathematics, 14 (1990), 79-90.
- [5] WIRSING, E.: Approximation mit algebraischen Zahlen beschränkten Grades, J. Reine Angew. Math., 206 (1961), 67-77.
- [6] ZEREN, B.M.: Über einige komplexe und p-adische Lückenreihen mit Werten aus der Mahlerschen Unterklassen Um, İst. Üniv. Fen Fak. Mec. Seri A, 45 (1980), 89-130.

Current address: Istanbul University, Department of Mathematics, 34459 Vezneciler - İstanbul, Turkey

E-mail address: yilmazg@istanbul.edu.tr